1
|
Dai Y, Xu X, Huo X, Schuitemaker JHN, Faas MM. Cell type-dependent response to benzo(a)pyrene exposure of human placental cell lines under normoxic, hypoxic, and pro-inflammatory conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116287. [PMID: 38579532 DOI: 10.1016/j.ecoenv.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1β. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1β secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, Guangdong, China
| | - Joost H N Schuitemaker
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Research & Development, IQProducts, 9727 DL, Groningen, the Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
2
|
Lkhagva-Yondon E, Seo MS, Oh Y, Jung J, Jeon E, Na K, Yoo HS, Kim WC, Esser C, Song SU, Jeon MS. The aryl hydrocarbon receptor controls mesenchymal stromal cell-mediated immunomodulation via ubiquitination of eukaryotic elongation factor-2 kinase. Cell Death Dis 2023; 14:812. [PMID: 38071243 PMCID: PMC10710493 DOI: 10.1038/s41419-023-06341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Mesenchymal stem cells (MSCs) have great therapeutic advantages due to their immunosuppressive properties. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor whose signaling plays an important role in the immune system. AHR may be involved in the regulation of MSC-associated immunomodulatory functions. However, the mechanisms by which AHR controls the immunosuppressive functions of MSCs are not well understood. Here, we report that Ahr-deficient MSCs show decreased therapeutic efficacy against graft-versus-host disease (GVHD) compared to wild-type (WT)-MSCs. This was probably due to decreased iNOS protein expression, which is a key regulatory enzyme in MSC immunomodulation. The expression of eukaryotic elongation factor 2 kinase (eEF2K), which inhibits the elongation stage of protein synthesis, is significantly increased in the Ahr-deficient MSCs. Inhibition of eEF2K restored iNOS protein expression. AHR is known to act as an E3 ligase together with CUL4B. We observed constitutive binding of AHR to eEF2K. Consequently, ubiquitination and degradation of eEF2K were inhibited in Ahr-deficient MSCs and by the AHR antagonist CH223191 in WT-MSCs. In summary, AHR regulates the immunomodulatory functions of MSCs through ubiquitination of eEF2K, thereby controlling iNOS protein synthesis and its product, nitric oxide levels.
Collapse
Affiliation(s)
- Enkhmaa Lkhagva-Yondon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Myeong Seong Seo
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Yena Oh
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Jonghun Jung
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Eunhae Jeon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Kwangmin Na
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Hyun Seung Yoo
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Woo Chul Kim
- Department of Radiation Oncology, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40021, Germany
| | - Sun U Song
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
- SCM Lifescience, Incheon, 21999, Republic of Korea
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea.
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea.
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea.
- SCM Lifescience, Incheon, 21999, Republic of Korea.
| |
Collapse
|
3
|
Nsonwu-Anyanwu AC, Ndudi Idenyi A, Offor SJ, Chinenyenwa Thomas C, Okpotu F, Edet CE, Opara Usoro CA. Association of exposure to polycyclic aromatic hydrocarbons with inflammation, oxidative DNA damage and renal-pulmonary dysfunctions in barbecue makers in Southern Nigeria. Rep Biochem Mol Biol 2022; 11:74-82. [PMID: 35765524 PMCID: PMC9208567 DOI: 10.52547/rbmb.11.1.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 04/16/2023]
Abstract
Background Multiple organ dysfunctions have been linked to exposure to polycyclic aromatic hydrocarbons (PAH) and oxidative stress (OS), oxidative DNA damage, and inflammatory response to PAH have been implicated. The biomarkers of OS (malondialdehyde (MDA), total plasma peroxide (TPP), total antioxidant capacity (TAC), glutathione (GSH), nitric oxide (NO), oxidative stress index (OSI)); 8-hydroxy-2-deoxyguanosine (8-OHdG)); tumor necrosis factor-alpha (TNF-α)); 1-hydroxy pyrene (1-HOP)), serum and urine creatinine, uric acid (UA), estimated glomerular filtration rate (eGFR) and peak expiratory flow rate (PEFR) were assessed in barbecue makers. Methods One hundred barbecue makers and 50 controls were enrolled into the study. Serum and urine creatinine, UA, TAC, MDA, GSH, NO and TPP were estimated by colorimetry, 8-OHdG and TNF-α by ELISA, PEFR using peak flow meter, 1-HOP by HPLC, eGFR and OSI by calculation. Results Barbecue makers had lower TAC, PEFR, and higher TNF-α and OS compared to controls (p<0.05). Higher TNF-α, lipid peroxidation, and lower antioxidants were observed in barbecue makers who had worked for >5years compared to <5years (p <0.05). Increasing number of working hours was associated with higher NO, lipid peroxidation, OS and lower antioxidants in barbecue makers (p <0.05). Positive associations were observed between 1-HOP and TPP (r=0.570, p=0.000), OSI (r=0.299, p=0.035) and negative association between TAC and TNF-α (r=-0.209, p=0.037), MDA (r=-0.265, p=0.008) in barbecue makers. Conclusion Increased lipid peroxidation, OS, inflammation and depressed antioxidants and lung function observed in barbecue makers suggest increased risk of chronic lung conditions which may be associated with exposure to PAH in barbecue fumes.
Collapse
Affiliation(s)
| | - Augusta Ndudi Idenyi
- Department of Medical Laboratory Science, University of Calabar, PMB 1115, Calabar, Nigeria.
| | - Sunday Jeremiah Offor
- Department of Medical Laboratory Science, University of Calabar, PMB 1115, Calabar, Nigeria.
| | | | - Friday Okpotu
- Department of Medical Laboratory Science, University of Calabar, PMB 1115, Calabar, Nigeria.
| | - Clement Emmanuel Edet
- Department of Medical Laboratory Science, University of Calabar, PMB 1115, Calabar, Nigeria.
| | | |
Collapse
|
4
|
Johnson TO, Abolaji AO, Omale S, Longdet IY, Kutshik RJ, Oyetayo BO, Adegboyega AE, Sagay A. Benzo[a]pyrene and Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide induced locomotor and reproductive senescence and altered biochemical parameters of oxidative damage in Canton-S Drosophila melanogaster. Toxicol Rep 2021; 8:571-580. [PMID: 33777703 PMCID: PMC7985712 DOI: 10.1016/j.toxrep.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/25/2021] [Accepted: 03/06/2021] [Indexed: 01/20/2023] Open
Abstract
Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH) commonly found in cigarette smoke, automobile exhaust fumes, grilled meat, and smoked food among others. Exposure to B[a]P is associated with a range of toxic effects including developmental, neurological, oxidative, inflammatory, mutagenic, carcinogenic and mortal. Efficient and more affordable experimental models like Drosophila melanogaster could provide more insight into the mechanism of PAH toxicity and help develop new strategies for prevention, diagnosis and treatment of PAH-related conditions. In this study, we examined the induction of some biochemical changes along with mortality and functional senescence by B[a]P and its metabolite, benzo[a]pyrene- 7,8-dihydrodiol-910-epoxide (BPDE) in the Canton-S strain of Drosophila melanogaster, with the aim to establish an alternative assay medium for B[a]P toxicity in flies. Flies were exposed to 2-200 μM of B[a]P and 1-10 μM of BPDE through diet for a seven-day survival assay followed by a four-day treatment to determine the effects of the compounds on negative geotaxis, fecundity and some biochemical parameters of oxidative damage. BPDE significantly reduced the survival rate of flies along the 7 days of exposure whereas B[a]P did not cause any significant change in the survival rate of flies. B[a]P and BPDE significantly reduced the climbing ability of flies after 4 days of exposure. Rate of emergence of flies significantly reduced at 10-200 μM of B[a]P and 5-10 μM of BPDE. Both compounds caused various levels of alterations in the values of reduced glutathione (GSH), total thiol (T-SH), glutathione-S-transferase (GST), catalase (CAT), hydrogen peroxide (H2O2), nitric oxide (NO) and acetylcholinesterase (AChE) of the flies. The compounds also exhibited high binding affinities and molecular interactions with the active site amino acid residues of Drosophila GST and the inhibitor binding site of Drosophila AChE in an in silico molecular docking analysis, with BPDE forming stable hydrogen bonds with AChE. Hence, the Canton-S strain of Drosophila melanogaster could offer a simple and affordable assay medium to study B[a]P toxicity.
Collapse
Affiliation(s)
- Titilayo Omolara Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Amos Olalekan Abolaji
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Simeon Omale
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
- Africa Center of Excellence in Phytomedicine Research and Development, University of Jos, Jos, Nigeria
| | - Ishaya Yohanna Longdet
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Richard Joseph Kutshik
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Bolaji Oyenike Oyetayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Abayomi Emmanuel Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Atiene Sagay
- Department of Obstetrics and Gynecology, College of Health Sciences, University of Jos, Jos, Nigeria
| |
Collapse
|
5
|
Eğimezer G, Üstündağ ÜV, Ateş PS, Ünal I, Üstündağ FD, Alturfan AA, Emekli-Alturfan E, Altinoz MA, Elmaci I. Methylnitrosourea, dimethylbenzanthracene and benzoapyrene differentially affect redox pathways, apoptosis and immunity in zebrafish. Hum Exp Toxicol 2020; 39:920-929. [PMID: 32054343 DOI: 10.1177/0960327120905961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer continues to be a major cause of mortality globally. Zebrafish present suitable models for studying the mechanisms of genotoxic carcinogens. The aim of this study was to investigate the interaction between oxidant-antioxidant status, apoptosis and immunity in zebrafish that were exposed to three different genotoxic carcinogens methylnitrosourea, dimethylbenzanthracene, benzoapyrene and methylnitrosourea + dimethylbenzanthracene starting from early embryogenesis for 30 days. Lipid peroxidation, nitric oxide levels, superoxide dismutase and glutathione-S-transferase activities and mRNA levels of apoptosis genes p53, bax, casp3a, casp2 and immunity genes fas, tnfα and ifnγ1 were evaluated. The disruption of the oxidant-antioxidant balance accompanied by altered expressions of apoptotic and immunity related genes were observed in different levels according to the carcinogen applied. Noteworthy, ifnγ expressions decreased in all carcinogen-exposed groups. Our results will provide basic data for further carcinogenesis research in zebrafish models.
Collapse
Affiliation(s)
- G Eğimezer
- Department of Biochemistry, Faculty of Dentistry Marmara University, Istanbul, Turkey
| | - Ü V Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey
| | - P S Ateş
- Department of Biochemistry, Faculty of Dentistry Marmara University, Istanbul, Turkey
| | - I Ünal
- Department of Biochemistry, Faculty of Dentistry Marmara University, Istanbul, Turkey
| | - F D Üstündağ
- Department of Biophysics, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - A A Alturfan
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - E Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry Marmara University, Istanbul, Turkey
| | - M A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | - I Elmaci
- Department of Neurosurgery, Acibadem University, Istanbul, Turkey
| |
Collapse
|
6
|
Merlen G, Kahale N, Ursic-Bedoya J, Bidault-Jourdainne V, Simerabet H, Doignon I, Tanfin Z, Garcin I, Péan N, Gautherot J, Davit-Spraul A, Guettier C, Humbert L, Rainteau D, Ebnet K, Ullmer C, Cassio D, Tordjmann T. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function. Gut 2020; 69:146-157. [PMID: 30723104 DOI: 10.1136/gutjnl-2018-316975] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.
Collapse
Affiliation(s)
- Grégory Merlen
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Nicolas Kahale
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | | | | - Hayat Simerabet
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Doignon
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Zahra Tanfin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Garcin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Noémie Péan
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Julien Gautherot
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Anne Davit-Spraul
- Service de Biochimie, Hopital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France
| | - Catherine Guettier
- Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France.,Service d'Anatomie Pathologique, Hopital Bicêtre, Le Kremlin-Bicêtre, France
| | - Lydie Humbert
- ER7, Université Pierre et Marie Curie-Paris-6, Paris, France
| | | | - Klaus Ebnet
- Institute-associated Research Group 'Cell adhesion and cell polarity', Institute of Medical Biochemistry, ZMBE, Münster, University of Münster, Münster, Germany
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Doris Cassio
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | |
Collapse
|
7
|
Li X, He S, Gao C, Deng H, Liu Y, Li C, Yuan L, Luo Y. Isoorientin attenuates benzo[a]pyrene-induced liver injury by inhibiting autophagy and pyroptosis in vitro and vivo. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1638888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xueyi Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Shenyuan He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Chunxia Gao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Hong Deng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Cuiqin Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
8
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
9
|
Tête A, Gallais I, Imran M, Chevanne M, Liamin M, Sparfel L, Bucher S, Burel A, Podechard N, Appenzeller BMR, Fromenty B, Grova N, Sergent O, Lagadic-Gossmann D. Mechanisms involved in the death of steatotic WIF-B9 hepatocytes co-exposed to benzo[a]pyrene and ethanol: a possible key role for xenobiotic metabolism and nitric oxide. Free Radic Biol Med 2018; 129:323-337. [PMID: 30268890 DOI: 10.1016/j.freeradbiomed.2018.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
Abstract
We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10 nM/5 mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.
Collapse
Affiliation(s)
- Arnaud Tête
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Liamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000 Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000 Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Brice M R Appenzeller
- HBRU, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000 Rennes, France
| | - Nathalie Grova
- HBRU, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
10
|
Hardonnière K, Lagadic-Gossmann D. ATPase inhibitory factor 1 (IF1): a novel player in pollutant-related diseases? CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Yuan L, Liu J, Deng H, Gao C. Benzo[a]pyrene Induces Autophagic and Pyroptotic Death Simultaneously in HL-7702 Human Normal Liver Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9763-9773. [PMID: 28990778 DOI: 10.1021/acs.jafc.7b03248] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a common polycyclic aromatic hydrocarbon compound, benzo[a]pyrene (BaP) is readily produced in processing of oil and fatty foods. It is not only a strong carcinogen but also a substance with strong immunotoxicity and reproduction toxicity. Autophagy and pyroptosis are two types of programmed cell death. Whether or not BaP damages body tissues via autophagy or pyroptosis remains unknown. The present study investigated the effects of BaP on autophagy and pyroptosis in HL-7702 cells. The results showed that BaP induced cell death in HL-7702 cells enhanced the intracellular levels of ROS and arrested the cell cycle at the S phase. Additionally, BaP resulted in cell death through autophagy and pyroptosis. Compared with the BaP group, the autophagy inhibitor 3-MA significantly (p < 0.01) inhibited the release of LDH by 70.53% ± 0.46 and NO by 50.36% ± 0.80, the increase of electrical conductivity by 12.08% ± 0.55, and the expressions of pyroptotic marker proteins (Caspase-1, Cox-2, IL-1β, IL-18). The pyroptosis inhibitor Ac-YVAD-CM also notably (p < 0.01) blocked BaP-induced autophagic cell death characterized by the increase of autophagic vacuoles and overexpression of Beclin-1 and LC3-II. In conclusion, BaP led to injury by inducing autophagy and pyroptosis simultaneously, the two of which coexisted and promoted each other in HL-7702 cells.
Collapse
Affiliation(s)
- Li Yuan
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University , Xi'an, 710119, China
| | - Junyi Liu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University , Xi'an, 710119, China
| | - Hong Deng
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University , Xi'an, 710119, China
| | - Chunxia Gao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University , Xi'an, 710119, China
| |
Collapse
|
12
|
Tzeng HP, Lan KC, Yang TH, Chung MN, Liu SH. Benzo[a]pyrene activates interleukin-6 induction and suppresses nitric oxide-induced apoptosis in rat vascular smooth muscle cells. PLoS One 2017; 12:e0178063. [PMID: 28531207 PMCID: PMC5439712 DOI: 10.1371/journal.pone.0178063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 11/18/2022] Open
Abstract
Benzo[a]pyrene, a ubiquitous environmental pollutant, has been suggested to be capable of initiating and/or accelerating atherosclerosis. Accumulation of vascular smooth muscle cells (VSMCs) in vessel intima is a hallmark of atherosclerosis. Nitric oxide (NO) can suppress VSMCs proliferation and induce VSMCs apoptosis. NO plays a compensatory role in the vascular lesions to reduce proliferation and/or accelerate apoptosis of VSMCs. The aim of this study was to investigate whether benzo[a]pyrene can affect VSMCs growth and apoptosis induced by NO. Benzo[a]pyrene (1–30 μmol/L) did not affect the cell number and cell cycle distribution in VSMCs under serum deprivation condition. Sodium nitroprusside (SNP), a NO donor, decreased cell viability and induced apoptosis in VSMCs. Benzo[a]pyrene significantly suppressed SNP-induced cell viability reduction and apoptosis. VSMCs cultured in conditioned medium from cells treated with benzo[a]pyrene could also prevent SNP-induced apoptosis. Benzo[a]pyrene was capable of inducing the activation of nuclear factor (NF)-κB and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in VSMCs. Both NF-κB inhibitor and p38 MAPK inhibitor significantly reversed the anti-apoptotic effect of benzo[a]pyrene on SNP-treated VSMCs. Incubation of VSMCs with benzo[a]pyrene significantly and dose-dependently increased interleukin (IL)-6 production. A neutralizing antibody to IL-6 effectively reversed the anti-apoptotic effect of benzo[a]pyrene on SNP-treated VSMCs. Taken together, these results demonstrate for the first time that benzo[a]pyrene activates IL-6 induction and protects VSMCs from NO-induced apoptosis. These findings propose a new mechanism for the atherogenic effect of benzo[a]pyrene.
Collapse
Affiliation(s)
- Huei-Ping Tzeng
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Ni Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Hardonnière K, Fernier M, Gallais I, Mograbi B, Podechard N, Le Ferrec E, Grova N, Appenzeller B, Burel A, Chevanne M, Sergent O, Huc L, Bortoli S, Lagadic-Gossmann D. Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Sci Rep 2017; 7:195. [PMID: 28298645 PMCID: PMC5428028 DOI: 10.1038/s41598-017-00269-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
Most tumors undergo metabolic reprogramming towards glycolysis, the so-called Warburg effect, to support growth and survival. Overexpression of IF1, the physiological inhibitor of the F0F1ATPase, has been related to this phenomenon and appears to be a relevant marker in cancer. Environmental contributions to cancer development are now widely accepted but little is known about the underlying intracellular mechanisms. Among the environmental pollutants humans are commonly exposed to, benzo[a]pyrene (B[a]P), the prototype molecule of polycyclic aromatic hydrocarbons (PAHs), is a well-known human carcinogen. Besides apoptotic signals, B[a]P can also induce survival signals in liver cells, both likely involved in cancer promotion. Our previous works showed that B[a]P elicited a Warburg-like effect, thus favoring cell survival. The present study aimed at further elucidating the molecular mechanisms involved in the B[a]P-induced metabolic reprogramming, by testing the possible involvement of IF1. We presently demonstrate, both in vitro and in vivo, that PAHs, especially B[a]P, strongly increase IF1 expression. Such an increase, which might rely on β2-adrenergic receptor activation, notably participates to the B[a]P-induced glycolytic shift and cell survival in liver cells. By identifying IF1 as a target of PAHs, this study provides new insights about how environmental factors may contribute to related carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France
- Université de Rennes 1, Biosit UMS3080, 35043, Rennes Cédex, France
| | - Morgane Fernier
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France
- Université de Rennes 1, Biosit UMS3080, 35043, Rennes Cédex, France
| | - Isabelle Gallais
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France
- Université de Rennes 1, Biosit UMS3080, 35043, Rennes Cédex, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Normand Podechard
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France
- Université de Rennes 1, Biosit UMS3080, 35043, Rennes Cédex, France
| | - Eric Le Ferrec
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France
- Université de Rennes 1, Biosit UMS3080, 35043, Rennes Cédex, France
| | - Nathalie Grova
- HBRU, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Brice Appenzeller
- HBRU, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Agnès Burel
- Université de Rennes 1, Biosit UMS3080, 35043, Rennes Cédex, France
| | - Martine Chevanne
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France
- Université de Rennes 1, Biosit UMS3080, 35043, Rennes Cédex, France
| | - Odile Sergent
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France
- Université de Rennes 1, Biosit UMS3080, 35043, Rennes Cédex, France
| | | | - Sylvie Bortoli
- INSERM UMR-S 1124, Université Paris Descartes, Centre Universitaire des Saint-Pères, Paris, France
| | - Dominique Lagadic-Gossmann
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail, Rennes, France.
- Université de Rennes 1, Biosit UMS3080, 35043, Rennes Cédex, France.
| |
Collapse
|
14
|
Hardonnière K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Cancer Biol 2017; 43:49-65. [PMID: 28088583 DOI: 10.1016/j.semcancer.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Laurence Huc
- INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), University of Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, F-31027, France
| | - Odile Sergent
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Jørn A Holme
- Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique Lagadic-Gossmann
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France.
| |
Collapse
|
15
|
The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival. Sci Rep 2016; 6:30776. [PMID: 27488617 PMCID: PMC4973274 DOI: 10.1038/srep30776] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na+/H+ exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration).
Collapse
|