1
|
Macedo LJA, Rodrigues FP, Hassan A, Máximo LNC, Zobi F, da Silva RS, Crespilho FN. Non-destructive molecular FTIR spectromicroscopy for real time assessment of redox metallodrugs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1094-1102. [PMID: 34935794 DOI: 10.1039/d1ay01198g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent emergence of FTIR spectromicroscopy (micro-FTIR) as a dynamic spectroscopy for imaging to study biological chemistry has opened new possibilities for investigating in situ drug release, redox chemistry effects on biological molecules, DNA and drug interactions, membrane dynamics, and redox reactions with proteins at the single cell level. Micro-FTIR applied to metallodrugs has been playing an important role since the last decade because of its great potential to achieve more robust and controlled pharmacological effects against several diseases, including cancer. An important aspect in the development of these drugs is to understand their cellular properties, such as uptake, accumulation, activity, and toxicity. In this review, we present the potential application of micro-FTIR and its importance for studying metal-based drugs, highlighting the perspectives of chemistry of living cells. We also emphasise bioimaging, which is of high importance to localize the cellular processes, for a proper understanding of the mechanism of action.
Collapse
Affiliation(s)
- Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Fernando P Rodrigues
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Ayaz Hassan
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Leandro N C Máximo
- Department of Chemistry, Federal Institute of Education, Science and Technology, Goiano, Urutuai, GO 75790-000, Brazil
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, CH-1700, Switzerland
| | - Roberto S da Silva
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
2
|
Fru PN, Nweke EE, Mthimkhulu N, Mvango S, Nel M, Pilcher LA, Balogun M. Anti-Cancer and Immunomodulatory Activity of a Polyethylene Glycol-Betulinic Acid Conjugate on Pancreatic Cancer Cells. Life (Basel) 2021; 11:462. [PMID: 34063891 PMCID: PMC8223974 DOI: 10.3390/life11060462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/09/2022] Open
Abstract
Drug delivery systems involving polymer therapeutics enhance drug potency by improved solubility and specificity and may assist in circumventing chemoresistance in pancreatic cancer (PC). We compared the effectiveness of the naturally occurring drug, betulinic acid (BA), alone and in a polymer conjugate construct of polyethylene glycol (PEG), (PEG-BA), on PC cells (MIA PaCa-2), a normal cell line (Vero) and on peripheral blood mononuclear cells (PBMCs). PEG-BA, was tested for its effect on cell death, immunomodulation and chemoresistance-linked signalling pathways. The conjugate was significantly more toxic to PC cells (p < 0.001, IC50 of 1.35 ± 0.11 µM) compared to BA (IC50 of 12.70 ± 0.34 µM), with a selectivity index (SI) of 7.28 compared to 1.4 in Vero cells. Cytotoxicity was confirmed by increased apoptotic cell death. PEG-BA inhibited the production of IL-6 by 4-5.5 fold compared to BA-treated cells. Furthermore, PEG-BA treatment of MIA PaCa-2 cells resulted in the dysregulation of crucial chemoresistance genes such as WNT3A, TXNRD1, SLC2A1 and GATA3. The dysregulation of chemoresistance-associated genes and the inhibition of cytokines such as IL-6 by the model polymer construct, PEG-BA, holds promise for further exploration in PC treatment.
Collapse
Affiliation(s)
- Pascaline Nanga Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (E.E.N.); (N.M.); (M.N.)
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (E.E.N.); (N.M.); (M.N.)
| | - Nompumelelo Mthimkhulu
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (E.E.N.); (N.M.); (M.N.)
| | - Sindisiwe Mvango
- Biopolymer Modification and Therapeutics Laboratory, Chemicals Cluster, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa; (S.M.); (M.B.)
- Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa;
| | - Marietha Nel
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (E.E.N.); (N.M.); (M.N.)
| | | | - Mohammed Balogun
- Biopolymer Modification and Therapeutics Laboratory, Chemicals Cluster, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa; (S.M.); (M.B.)
| |
Collapse
|
3
|
Domenici F, Capocefalo A, Brasili F, Bedini A, Giliberti C, Palomba R, Silvestri I, Scarpa S, Morrone S, Paradossi G, Frogley MD, Cinque G. Ultrasound delivery of Surface Enhanced InfraRed Absorption active gold-nanoprobes into fibroblast cells: a biological study via Synchrotron-based InfraRed microanalysis at single cell level. Sci Rep 2019; 9:11845. [PMID: 31413286 PMCID: PMC6694135 DOI: 10.1038/s41598-019-48292-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ultrasound (US) induced transient membrane permeabilisation has emerged as a hugely promising tool for the delivery of exogenous vectors through the cytoplasmic membrane, paving the way to the design of novel anticancer strategies by targeting functional nanomaterials to specific biological sites. An essential step towards this end is the detailed recognition of suitably marked nanoparticles in sonoporated cells and the investigation of the potential related biological effects. By taking advantage of Synchrotron Radiation Fourier Transform Infrared micro-spectroscopy (SR-microFTIR) in providing highly sensitive analysis at the single cell level, we studied the internalisation of a nanoprobe within fibroblasts (NIH-3T3) promoted by low-intensity US. To this aim we employed 20 nm gold nanoparticles conjugated with the IR marker 4-aminothiophenol. The significant Surface Enhanced Infrared Absorption provided by the nanoprobes, with an absorbance increase up to two orders of magnitude, allowed us to efficiently recognise their inclusion within cells. Notably, the selective and stable SR-microFTIR detection from single cells that have internalised the nanoprobe exhibited clear changes in both shape and intensity of the spectral profile, highlighting the occurrence of biological effects. Flow cytometry, immunofluorescence and murine cytokinesis-block micronucleus assays confirmed the presence of slight but significant cytotoxic and genotoxic events associated with the US-nanoprobe combined treatments. Our results can provide novel hints towards US and nanomedicine combined strategies for cell spectral imaging as well as drug delivery-based therapies.
Collapse
Affiliation(s)
- F Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy.
| | - A Capocefalo
- Dipartimento di Fisica, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - F Brasili
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy.,Dipartimento di Fisica, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - A Bedini
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Monteporzio Catone, Rome, Italy
| | - C Giliberti
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Monteporzio Catone, Rome, Italy
| | - R Palomba
- Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti e Insediamenti Antropici (DIT), INAIL, Monteporzio Catone, Rome, Italy
| | - I Silvestri
- Dipartimento di Medicina Molecolare, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - S Scarpa
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - S Morrone
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Sapienza", Rome, Italy
| | - G Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - M D Frogley
- MIRIAM beamline B22, Diamond Light Source, Harwell Campus, Chilton-Didcot, OX11 0DE, UK
| | - G Cinque
- MIRIAM beamline B22, Diamond Light Source, Harwell Campus, Chilton-Didcot, OX11 0DE, UK
| |
Collapse
|
4
|
Zhang Z, Lin H, Li Z, Luo Y, Wang L, Chen L, Huang P. Identification of fatal hypothermia via attenuated total reflection Fourier transform infrared spectroscopy of rabbit vitreous humour. AUST J FORENSIC SCI 2019. [DOI: 10.1080/00450618.2019.1629021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhong Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
- Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Hancheng Lin
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Zhengdong Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yiwen Luo
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Lei Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Liqin Chen
- Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| |
Collapse
|
5
|
Mignolet A, Mathieu V, Goormaghtigh E. HTS-FTIR spectroscopy allows the classification of polyphenols according to their differential effects on the MDA-MB-231 breast cancer cell line. Analyst 2018; 142:1244-1257. [PMID: 27924981 DOI: 10.1039/c6an02135b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer is a major public health issue among women in the world. Meanwhile new anticancer treatments struggle more and more to be accepted in the pharmaceutical market and research costs still increase. There is therefore a need to find new treatments and new screening methods to test them more quickly and efficiently. Among natural compounds, an increasing interest has been given to polyphenols as they can take action at the different stages of carcinogenesis, from tumour initiation to metastasis formation, by disturbing multiple cellular signalling pathways. They constitute one of the largest groups of plant metabolites and more than 8000 compounds have already been identified based on their chemical structure. Traditionally in pharmacology, new anticancer drugs are first evaluated for their potential to inhibit the proliferation of cancer cell lines. Numerous potential drugs are discarded at this stage even though they could show interesting modes of action. In turn, there is an increasing demand for more systemic approaches in order to obtain a global and accurate insight into the biochemical processes mediated by drugs. Recently, FTIR spectroscopy was demonstrated to be an innovative tool to obtain a unique fingerprint of the effects of anticancer drugs on cells in culture. While this spectral technique appears to have a definite potential to sort drugs according to their spectral fingerprints, characteristic of the metabolic modifications induced, the present challenge remains to evaluate the drug-induced spectral changes in cancer cells on a larger scale. This article presents the results obtained for a 24 h-exposure of the breast cancer cell line MDA-MB-231 to 15 compounds belonging to different classes of polyphenols using FTIR spectroscopy connected to a high throughput screening extension. Through unsupervised and supervised statistical analyses (PCA, MANOVA, Student's t-tests and HCA), a distinction between polyphenol treatments and controls could be well established.
Collapse
Affiliation(s)
- A Mignolet
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes; Université Libre de Bruxelles, Campus Plaine, Bld du Triomphe 2, CP206/2, B1050 Brussels, Belgium
| | | | | |
Collapse
|
6
|
Sibanda T, Buys EM. Resuscitation and growth kinetics of sub-lethally injured Listeria monocytogenes strains following fluorescence activated cell sorting (FACS). Food Res Int 2017; 100:150-158. [DOI: 10.1016/j.foodres.2017.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/23/2022]
|
7
|
Precision toxicology based on single cell sequencing: an evolving trend in toxicological evaluations and mechanism exploration. Arch Toxicol 2017; 91:2539-2549. [DOI: 10.1007/s00204-017-1971-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
|