1
|
Cong Y, Du C, Xing K, Bian Y, Li X, Wang M. Investigation on co-solvency, solvent effect, Hansen solubility parameter and preferential solvation of fenbufen dissolution and models correlation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Nawaz H, Ali A, Rehman T, Aslam A. Chronological effects of non-steroidal anti-inflammatory drug therapy on oxidative stress and antioxidant status in patients with rheumatoid arthritis. Clin Rheumatol 2020; 40:1767-1778. [PMID: 33009599 DOI: 10.1007/s10067-020-05438-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION/OBJECTIVES Non-steroidal anti-inflammatory drugs (NSAIDs) are effective in reducing pain and inflammation in rheumatoid arthritis and other joint- and muscle-associated diseases. However, the extensive, long-term, and over the counter administration of NSAIDs may cause various side effects in the patients. In the present study, the chronological effect of NSAIDs on oxidative stress and antioxidant status in patients with rheumatoid arthritis was studied. METHODS The study included 100 female individuals categorized in four major groups: (1) control group consisting of age- and gender-matched healthy individuals, (2) NRA-NSAID individuals taking NSAIDs without any history of RA, (3) RA individuals with a history of RA but not taking NSAIDs, and (4) RA-NSAID individuals with chronic RA and taking NSAIDs for a long period. The sera of the participants were analyzed for the oxidative stress and antioxidant status. RESULTS The RA-NSAID group showed the significantly highest oxidative stress, in terms of malondialdehyde content and lipid-reducing ability as determined in thiocyanate and hemoglobin-induced linoleic acid systems. However, the free radical scavenging ability of the RA-NSAID group, against 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, superoxide, and 2,2-azino-bis-tetrazolium sulfate radicals, was found to be lower than those of the other study groups. The regression analysis of the experimental data showed a significant positive relationship between duration of NSAID intake and malondialdehyde production, lipid-reducing ability, and metal chelating ability in the RA-NSAID patients. The free radical scavenging abilities of the RA-NSAID group were negatively correlated with the duration of NSAID intake. CONCLUSIONS The prolonged use of NSAIDs significantly increased the oxidative stress and decrease the antioxidant potential of both the RA patients and NRA individuals. The study provides awareness to the public particularly the RA patients regarding the risk of oxidative stress-associated abnormalities caused by the frequent and prolonged use of NSAIDs for temporary relief from pain. Key Points • The study presents the effects of long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) on antioxidant status of patients with rheumatoid arthritis. • The continuous administration of NSAIDs has been found to significantly increase the oxidative stress of the patients with rheumatoid arthritis as well as the individuals with no signs of rheumatoid arthritis. • The prolonged NSAID therapy also decreased the antioxidant potential of the patients with rheumatoid arthritis as well as the individuals with no signs of rheumatoid arthritis. • The study would be a significant and valuable contribution to the literature for the awareness regarding the use of NSAIDs.
Collapse
Affiliation(s)
- Haq Nawaz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Asma Ali
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Tanzila Rehman
- Department of Chemistry, The Women University Multan, Multan, 60800, Pakistan
| | - Amna Aslam
- Faisalabad Medical University, Faisalabad, 38000, Pakistan
| |
Collapse
|
3
|
No MH, Heo JW, Yoo SZ, Kim CJ, Park DH, Kang JH, Seo DY, Han J, Kwak HB. Effects of aging and exercise training on mitochondrial function and apoptosis in the rat heart. Pflugers Arch 2020; 472:179-193. [PMID: 32048000 DOI: 10.1007/s00424-020-02357-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Aging is associated with vulnerability to cardiovascular diseases, and mitochondrial dysfunction plays a critical role in cardiovascular disease pathogenesis. Exercise training is associated with benefits against chronic cardiac diseases. The purpose of this study was to determine the effects of aging and treadmill exercise training on mitochondrial function and apoptosis in the rat heart. Fischer 344 rats were divided into young sedentary (YS; n = 10, 4 months), young exercise (YE; n = 10, 4 months), old sedentary (OS; n = 10, 20 months), and old exercise (OE; n = 10, 20 months) groups. Exercise training groups ran on a treadmill at 15 m/min (young) or 10 m/min (old), 45 min/day, 5 days/week for 8 weeks. Morphological parameters, mitochondrial function, mitochondrial dynamics, mitophagy, and mitochondria-mediated apoptosis were analyzed in cardiac muscle. Mitochondrial O2 respiratory capacity and Ca2+ retention capacity gradually decreased, and mitochondrial H2O2 emitting potential significantly increased with aging. Exercise training attenuated aging-induced mitochondrial H2O2 emitting potential and mitochondrial O2 respiratory capacity, while protecting Ca2+ retention in the old groups. Aging triggered imbalanced mitochondrial dynamics and excess mitophagy, while exercise training ameliorated the aging-induced imbalance in mitochondrial dynamics and excess mitophagy. Aging induced increase in Bax and cleaved caspase-3 protein levels, while decreasing Bcl-2 levels. Exercise training protected against the elevation of apoptotic signaling markers by decreasing Bax and cleaved caspase-3 and increasing Bcl-2 protein levels, while decreasing the Bax/Bcl-2 ratio and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive myonuclei. These data demonstrate that regular exercise training prevents aging-induced impairment of mitochondrial function and mitochondria-mediated apoptosis in cardiac muscles.
Collapse
Affiliation(s)
- Mi-Hyun No
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Su-Zi Yoo
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, Kyung Hee University, Seoul, South Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University School of Medicine, Incheon, South Korea
| | - Dae-Yun Seo
- Department of Physiology and Cardiovascular and Metabolic Disease Center, Inje University School of Medicine, Busan, South Korea
| | - Jin Han
- Department of Physiology and Cardiovascular and Metabolic Disease Center, Inje University School of Medicine, Busan, South Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
4
|
Miao X, Li W, Niu B, Li J, Sun J, Qin M, Zhou Z. Mitochondrial dysfunction in endothelial cells induced by airborne fine particulate matter (<2.5 μm). J Appl Toxicol 2019; 39:1424-1432. [DOI: 10.1002/jat.3828] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoyan Miao
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Wenke Li
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Bingyu Niu
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Jiangshuai Li
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Jingjie Sun
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Mengnan Qin
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Zhixiang Zhou
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| |
Collapse
|
5
|
Bittencourt JAHM, Neto MFA, Lacerda PS, Bittencourt RCVS, Silva RC, Lobato CC, Silva LB, Leite FHA, Zuliani JP, Rosa JMC, Borges RS, Santos CBR. In Silico Evaluation of Ibuprofen and Two Benzoylpropionic Acid Derivatives with Potential Anti-Inflammatory Activity. Molecules 2019; 24:E1476. [PMID: 30991684 PMCID: PMC6515000 DOI: 10.3390/molecules24081476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a complex reaction involving cellular and molecular components and an unspecific response to a specific aggression. The use of scientific and technological innovations as a research tool combining multidisciplinary knowledge in informatics, biotechnology, chemistry and biology are essential for optimizing time and reducing costs in the drug design. Thus, the integration of these in silico techniques makes it possible to search for new anti-inflammatory drugs with better pharmacokinetic and toxicological profiles compared to commercially used drugs. This in silico study evaluated the anti-inflammatory potential of two benzoylpropionic acid derivatives (MBPA and DHBPA) using molecular docking and their thermodynamic profiles by molecular dynamics, in addition to predicting oral bioavailability, bioactivity and toxicity. In accordance to our predictions the derivatives proposed here had the potential capacity for COX-2 inhibition in the human and mice enzyme, due to containing similar interactions with the control compound (ibuprofen). Ibuprofen showed toxic predictions of hepatotoxicity (in human, mouse and rat; toxicophoric group 2-arylacetic or 3-arylpropionic acid) and irritation of the gastrointestinal tract (in human, mouse and rat; toxicophoric group alpha-substituted propionic acid or ester) confirming the literature data, as well as the efficiency of the DEREK 10.0.2 program. Moreover, the proposed compounds are predicted to have a good oral bioavailability profile and low toxicity (LD50 < 700 mg/kg) and safety when compared to the commercial compound. Therefore, future studies are necessary to confirm the anti-inflammatory potential of these compounds.
Collapse
Affiliation(s)
- José A H M Bittencourt
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
| | - Moysés F A Neto
- Laboratory of Molecular Modeling, State University of Feira de Santana, Feira de Santana-BA 44036-900, Brazil.
| | - Pedro S Lacerda
- Laboratory of Bioinformatics and Molecular Modeling, School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil.
| | - Renata C V S Bittencourt
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
| | - Rai C Silva
- Computational Laboratory of Pharmaceutical Chemistry, University of Sao Paulo, Av. Prof. do Café, s/n - Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil.
| | - Cleison C Lobato
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém-PA 66075-110, Brazil.
| | - Luciane B Silva
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
| | - Franco H A Leite
- Laboratory of Molecular Modeling, State University of Feira de Santana, Feira de Santana-BA 44036-900, Brazil.
| | - Juliana P Zuliani
- Laboratory Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR-364, Porto Velho-RO 78912-000, Brazil.
| | - Joaquín M C Rosa
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs.GRANADA. University of Granada, 18071 Granada, Spain.
| | - Rosivaldo S Borges
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém-PA 66075-110, Brazil.
| | - Cleydson B R Santos
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém-PA 66075-110, Brazil.
| |
Collapse
|
6
|
Synthesis, Characterization, and Antibacterial Activity of Ag₂O-Loaded Polyethylene Terephthalate Fabric via Ultrasonic Method. NANOMATERIALS 2019; 9:nano9030450. [PMID: 30889785 PMCID: PMC6474086 DOI: 10.3390/nano9030450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
In this study, Ag₂O was synthesized on polyethylene terephthalate fabrics by using an ultrasonic technique with Ag ion reduction in an aqueous solution. The effects of pH on the microstructure and antibacterial properties of the fabrics were evaluated. X-ray diffraction confirmed the presence of Ag₂O on the fabrics. The fabrics were characterized by Fourier transform infrared spectroscopy, ultraviolet⁻visible spectroscopy, and wettability testing. Field-emission scanning electron microscopy verified that the change of pH altered the microstructure of the materials. Moreover, the antibacterial activity of the fabrics against Escherichia coli was related to the morphology of Ag₂O particles. Thus, the surface structure of Ag₂O particles may be a key factor of the antibacterial activity.
Collapse
|