1
|
Desai NC, Joshi SB, Jadeja KA. A one‐pot multicomponent Biginelli reaction for the preparation of novel pyrimidinthione derivatives as antimicrobial agents. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nisheeth C. Desai
- Division of Medicinal Chemistry, Department of Chemistry (DST‐FIST Sponsored & UGC NON‐SAP), Mahatma Gandhi CampusMaharaja Krishnakumarsinhji Bhavnagar University Bhavnagar Gujarat India
| | - Surbhi B. Joshi
- Division of Medicinal Chemistry, Department of Chemistry (DST‐FIST Sponsored & UGC NON‐SAP), Mahatma Gandhi CampusMaharaja Krishnakumarsinhji Bhavnagar University Bhavnagar Gujarat India
| | - Krunalsinh A. Jadeja
- Division of Medicinal Chemistry, Department of Chemistry (DST‐FIST Sponsored & UGC NON‐SAP), Mahatma Gandhi CampusMaharaja Krishnakumarsinhji Bhavnagar University Bhavnagar Gujarat India
| |
Collapse
|
2
|
Shi P, Li S, Hu LM, Wang C, Loh TP, Hu XH. The ruthenium-catalyzed C-H functionalization of enamides with isocyanates: easy entry to pyrimidin-4-ones. Chem Commun (Camb) 2019; 55:11115-11118. [PMID: 31461097 DOI: 10.1039/c9cc03612a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ruthenium-catalyzed heteroannulation between enamides and isocyanates has been realized as a complementary approach to conventional strategies for the synthesis of pyrimidin-4-ones. High step- and atom-economy was achieved for the rapid construction of such privileged scaffolds, which are found in a multitude of pharmaceutical compounds. The generality and practicability of this transformation were reflected by the broad scope of substrates with diverse functional groups, large-scale synthesis, and late-stage diversification.
Collapse
Affiliation(s)
- Pengfei Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | | | | | | | | | | |
Collapse
|
3
|
Semenova MN, Demchuk DV, Tsyganov DV, Chernysheva NB, Samet AV, Silyanova EA, Kislyi VP, Maksimenko AS, Varakutin AE, Konyushkin LD, Raihstat MM, Kiselyov AS, Semenov VV. Sea Urchin Embryo Model As a Reliable in Vivo Phenotypic Screen to Characterize Selective Antimitotic Molecules. Comparative evaluation of Combretapyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles as Tubulin-Binding Agents. ACS COMBINATORIAL SCIENCE 2018; 20:700-721. [PMID: 30452225 DOI: 10.1021/acscombsci.8b00113] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of both novel and reported combretastatin analogues, including diarylpyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles, were synthesized via improved protocols to evaluate their antimitotic antitubulin activity using in vivo sea urchin embryo assay and a panel of human cancer cells. A systematic comparative structure-activity relationship studies of these compounds were conducted. Pyrazoles 1i and 1p, isoxazole 3a, and triazole 7b were found to be the most potent antimitotics across all tested compounds causing cleavage alteration of the sea urchin embryo at 1, 0.25, 1, and 0.5 nM, respectively. These agents exhibited comparable cytotoxicity against human cancer cells. Structure-activity relationship studies revealed that compounds substituted with 3,4,5-trimethoxyphenyl ring A and 4-methoxyphenyl ring B displayed the highest activity. 3-Hydroxy group in the ring B was essential for the antiproliferative activity in the diarylisoxazole series, whereas it was not required for potency of diarylpyrazoles. Isoxazoles 3 with 3,4,5-trimethoxy-substituted ring A and 3-hydroxy-4-methoxy-substituted ring B were more active than the respective pyrazoles 1. Of the azoles substituted with the same set of other aryl pharmacophores, diarylpyrazoles 1, 4,5-diarylisoxazoles 3, and 4,5-diaryl-1,2,3-triazoles 7 displayed similar strongest antimitotic antitubulin effect followed by 3,4-diarylisoxazoles 5, 1,5-diaryl-1,2,3-triazoles 8, and pyrroles 10 that showed the lowest activity. Introduction of the amino group into the heterocyclic core decreased the antimitotic antitubulin effect of pyrazoles, triazoles, and to a lesser degree of 4,5-diarylisoxazoles, whereas potency of the respective 3,4-diarylisoxazoles was increased.
Collapse
Affiliation(s)
- Marina N. Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russian Federation
| | - Dmitry V. Demchuk
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Dmitry V. Tsyganov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Natalia B. Chernysheva
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Alexander V. Samet
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Eugenia A. Silyanova
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Victor P. Kislyi
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Anna S. Maksimenko
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Alexander E. Varakutin
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Leonid D. Konyushkin
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Mikhail M. Raihstat
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Alex S. Kiselyov
- Genea Biocells US, Inc., Suite 210, 11099 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| |
Collapse
|
4
|
Anello L, Cavalieri V, Di Bernardo M. Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:36-44. [PMID: 29128602 DOI: 10.1016/j.cbpc.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023]
Abstract
The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli.
Collapse
Affiliation(s)
- Letizia Anello
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy
| | - Maria Di Bernardo
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|