1
|
Goerdeler C, Engelmann B, Aldehoff AS, Schaffert A, Blüher M, Heiker JT, Wabitsch M, Schubert K, Rolle-Kampczyk U, von Bergen M. Metabolomics in human SGBS cells as new approach method for studying adipogenic effects: Analysis of the effects of DINCH and MINCH on central carbon metabolism. ENVIRONMENTAL RESEARCH 2024; 252:118847. [PMID: 38582427 DOI: 10.1016/j.envres.2024.118847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Growing evidence suggests that exposure to certain metabolism-disrupting chemicals (MDCs), such as the phthalate plasticizer DEHP, might promote obesity in humans, contributing to the spread of this global health problem. Due to the restriction on the use of phthalates, there has been a shift to safer declared substitutes, including the plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). Notwithstanding, recent studies suggest that the primary metabolite monoisononyl-cyclohexane-1,2-dicarboxylic acid ester (MINCH), induces differentiation of human adipocytes and affects enzyme levels of key metabolic pathways. Given the lack of methods for assessing metabolism-disrupting effects of chemicals on adipose tissue, we used metabolomics to analyze human SGSB cells exposed to DINCH or MINCH. Concentration analysis of DINCH and MINCH revealed that uptake of MINCH in preadipocytes was associated with increased lipid accumulation during adipogenesis. Although we also observed intracellular uptake for DINCH, the solubility of DINCH in cell culture medium was limited, hampering the analysis of possible effects in the μM concentration range. Metabolomics revealed that MINCH induces lipid accumulation similar to peroxisome proliferator-activated receptor gamma (PPARG)-agonist rosiglitazone through upregulation of the pyruvate cycle, which was recently identified as a key driver of de novo lipogenesis. Analysis of the metabolome in the presence of the PPARG-inhibitor GW9662 indicated that the effect of MINCH on metabolism was mediated at least partly by a PPARG-independent mechanism. However, all effects of MINCH were only observed at high concentrations of 10 μM, which are three orders of magnitudes higher than the current concentrations of plasticizers in human serum. Overall, the assessment of the effects of DINCH and MINCH on SGBS cells by metabolomics revealed no adipogenic potential at physiologically relevant concentrations. This finding aligns with previous in vivo studies and supports the potential of our method as a New Approach Method (NAM) for the assessment of adipogenic effects of environmental chemicals.
Collapse
Affiliation(s)
- Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Alexandra Schaffert
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Matthias Blüher
- Department of Endocrinology, Nephrology and Rheumatology, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany.
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
3
|
El-Beshbishy HA, Waggas DS, Ali RA. Rats' testicular toxicity induced by bisphenol A is lessened by crocin via an antiapoptotic mechanism and bumped P-glycoprotein expression. Toxicon 2024; 241:107674. [PMID: 38458495 DOI: 10.1016/j.toxicon.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Bisphenol A (BPA) engenders testicular toxicity via hydroxyl free radical genesis in rat striatum and depletion of the endogenous antioxidants in the epididymal sperms. The multi-drug resistance efflux carrier; P-glycoprotein (P-gp) expel the BPA from the testis and is responsible for the testicular protection through the deactivation of numerous xenobiotics. In our study, we investigated whether the BPA-induced testicular toxicity could be circumvented through administration of an antioxidant; crocin (Cr). Implication of P-gp expression was also investigated. Rats administered BPA (10 mg/kg b.w. orally for 14 days), dropped the body weight, testes/body weight ratio, total protein content, testosterone, follicle stimulating hormone, luteinizing hormone, and sperm motility & count, total antioxidant status, glutathione content and antioxidant enzymes (superoxide dismutase and catalase), concomitant with the elevation of the percentage abnormal sperm morphology, as well as testicular lipid peroxides and nitrite/nitrate levels. Histopathological examination showed spermatogenesis disorders after the BPA rats exposure. The immunohistochemical study showed up-regulation of the P-gp as evident by increasing immunoreactivity in interstitial cells, with positive localization in some spermatogonia cells. The BPA-treated rats showed positive immunoreactivity against caspase-3. The co-intake of Cr (200 mg/kg b.w./day, i.p. 14 days) along with the BPA, significantly ameliorated all the mentioned parameters, boosted histopathological image, fell the caspase-3 up-regulation, and perched the P-gp expression. We showed that, Cr promotes P-gp as an approach to nurture the testicles against the BPA toxicity. In conclusion; Cr lessens the oxidative stress conditions to safeguard rats from the BPA-induced testicular toxicity and sex hormones abnormalities, reducing apoptosis and up-regulating P-gp.
Collapse
Affiliation(s)
- Hesham A El-Beshbishy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11231, Egypt; Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
| | - Rabab A Ali
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, 35516, Egypt; Medical Laboratory Technology Dept., College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
4
|
Wang Z, Ma J, Wang T, Qin C, Hu X, Mosa A, Ling W. Environmental health risks induced by interaction between phthalic acid esters (PAEs) and biological macromolecules: A review. CHEMOSPHERE 2023; 328:138578. [PMID: 37023900 DOI: 10.1016/j.chemosphere.2023.138578] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
As a kind of compounds abused in industry productions, phthalic acid esters (PAEs) cause serious problems in natural environment. PAEs pollution has penetrated into environmental media and human food chain. This review consolidates the updated information to assess the occurrence and distribution of PAEs in each transmission section. It is found that micrograms per kilogram of PAEs are exposed to humans through daily diets. After entering the human body, PAEs often undergo the metabolic process of hydrolysis to monoesters phthalates and conjugation process. Unfortunately, in the process of systemic circulation, PAEs will interact with biological macromolecules in vivo under the action of non-covalent binding, which is also the essence of biological toxicity. The interactions usually operate in the following pathways: (a) competitive binding; (b) functional interference; and (c) abnormal signal transduction. While the non-covalent binding forces mainly contain hydrophobic interaction, hydrogen bond, electrostatic interaction, and π interaction. As a typical endocrine disruptor, the health risks of PAEs often start with endocrine disorder, further leading to metabolic disruption, reproductive disorders, and nerve injury. Besides, genotoxicity and carcinogenicity are also attributed to the interaction between PAEs and genetic materials. This review also pointed out that the molecular mechanism study on biological toxicity of PAEs are deficient. Future toxicological research should pay more attention to the intermolecular interactions. This will be beneficial for evaluating and predicting the biological toxicity of pollutants at molecular scale.
Collapse
Affiliation(s)
- Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
5
|
Nicholas TP, Boyes WK, Scoville DK, Workman TW, Kavanagh TJ, Altemeier WA, Faustman EM. The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1708. [PMID: 33768701 DOI: 10.1002/wnan.1708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 11/07/2022]
Abstract
The Adverse Outcome Pathway (AOP) framework is serving as a basis to integrate new data streams in order to enhance the power of predictive toxicology. AOP development for engineered nanomaterials (ENM), including silver nanoparticles (AgNP), is currently lagging behind other chemicals of regulatory interest due to our limited understanding of the mechanism by which underlying genetics or diseases directly modify host response to AgNP exposures. This also highlights the importance of considering the Aggregate Exposure Pathway (AEP) framework, which precedes the AOP framework and outlines source to target site exposure. The AEP and AOP frameworks interface at the target site, where a molecular initiating event (MIE) occurs and is followed by key events (KE) for adverse cellular and organ responses along a biological pathway and ends with the adverse organism response. The primary goal of this study is to use AgNP to interrogate the AEP-AOP framework by organizing and integrating in vitro dose-response data and in vivo exposure-response data from previous studies to evaluate the effects of interactions between host genetic and acquired factors, or gene × environment interactions (G × E), on AgNP toxicity in the respiratory system. Using this framework will help us to identify plausible key event relationships (KER) between MIE and adverse organism responses when KE are not measured using the same assay in order to derive future predictive models, guide research, and support development of tools for making risk-based, regulatory decisions on ENM. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - William K Boyes
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Tomomi W Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Hughes JR, Soto-Heras S, Muller CH, Miller DJ. Phthalates in Albumin from Human Serum: Implications for Assisted Reproductive Technology. F&S REVIEWS 2021; 2:160-168. [PMID: 36268475 PMCID: PMC9580017 DOI: 10.1016/j.xfnr.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Albumin, a vital protein in cell culture systems, is derived from whole blood or blood products. The culture of human gametes and developing embryos for assisted reproduction (ART) uses albumin of human origin. Human serum albumin (HSA) is derived from expired blood obtained from blood banks. This blood has been stored in polyvinyl chloride bags made clear and flexible with di-2-ethylhexyl phthalate (DEHP). But DEHP can leach from the bags into stored blood and co-fractionate with HSA during albumin isolation. DEHP and its metabolite mono-ethylhexyl phthalate (MEHP), are known endocrine disruptors that are reported to have negative effects when directly supplemented in media for IVF using gametes from a variety of animals. Therefore, the contamination of ART media with DEHP and MEHP through HSA supplementation may have effects on the outcomes of ART procedures. While the embryology laboratory is strictly monitored to prevent a wide variety of contamination, phthalate contamination of HSA has not been broadly examined. This review outlines the function of HSA in ART procedures and the production of HSA from whole blood. Finally, the review highlights the effects of acute phthalate exposures on gametes during in vitro procedures.
Collapse
Affiliation(s)
- Jennifer R. Hughes
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, Phone 217-333-3408
| | - Sandra Soto-Heras
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, Phone 217-333-3408
| | | | - David J. Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, Phone 217-333-3408
| |
Collapse
|
7
|
The Variations of Metabolic Detoxification Enzymes Lead to Recurrent Miscarriage and Their Diagnosis Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:259-280. [PMID: 33523438 DOI: 10.1007/978-981-33-4187-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Spontaneous abortion has been a common obstetrical and gynecological disease, which occurs in 10-15% of all pregnancies. Recurrent miscarriage (RM) refers to the occurrence of three or more times abortions with the same partner. It is generally believed that environmental pollution associated with economic development may cause infertility and RM. When xenobiotics from the environment enter the body, they must be cleared from the body by various metabolic enzymes in the body. The absence or variation of these enzymes may be the genetic basis of RM caused by environmental pollution. The variation of metabolic detoxification enzyme can directly affect the removal of harmful substances from internal and external sources. Therefore, the determination of metabolic enzyme activity may become an important factor in the diagnosis of RM etiology and seeking methods to improve the detoxification ability has a great significance for the treatment of RM.
Collapse
|
8
|
Phthalate side-chain structures and hydrolysis metabolism associated with steroidogenic effects in MLTC-1 Leydig cells. Toxicol Lett 2019; 308:56-64. [DOI: 10.1016/j.toxlet.2019.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/05/2019] [Accepted: 03/28/2019] [Indexed: 11/19/2022]
|
9
|
Du Z, Cao YF, Li SN, Hu CM, Fu ZW, Huang CT, Sun XY, Liu YZ, Yang K, Fang ZZ. Inhibition of UDP-glucuronosyltransferases (UGTs) by phthalate monoesters. CHEMOSPHERE 2018; 197:7-13. [PMID: 29328989 DOI: 10.1016/j.chemosphere.2018.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Phthalate monoesters are important metabolites of phthalate esters (PAEs) which have been extensively utilized in industry. This study aims to investigate the inhibition of phthalate monoesters on the activity of various isoforms of UDP-glucuronosyltransferases (UGTs), trying to elucidate the toxicity mechanism of environmental endocrine disruptors from the new perspectives. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was employed to evaluate 8 kinds of phthalate monoesters on 11 sorts of main human UGT isoforms. 100 μM phthalate monoesters exhibited negligible inhibition towards the activity of UGT1A1, UGT1A3, UGT1A6, UGT1A8, UGT1A10, UGT2B4, UGT2B7, UGT2B15 and UGT2B17. The activity of UGT1A7 was strongly inhibited by monoethylhexyl phthalate (MEHP), but slightly inhibited by all the other phthalate monoesters. UGT1A9 was broadly inhibited by monobenzyl phthalate (MBZP), monocyclohexyl phthalate (MCHP), MEHP, monohexyl phthalate (MHP) and monooctyl phthalate (MOP), respectively. MEHP exhibited competitive inhibition towards UGT1A7, and MBZP, MCHP, MEHP, MHP and MOP showed competitive inhibition towards UGT1A9. The inhibition kinetic parameters (Ki) were calculated to be 11.25 μM for MEHP-UGT1A7, and 2.13, 0.09, 1.17, 7.47, 0.16 μM for MBZP-UGT1A9, MCHP-UGT1A9, MEHP-UGT1A9, MHP-UGT1A9, MOP-UGT1A9, respectively. Molecular docking indicated that both hydrogen bonds formation and hydrophobic interactions significantly contributed to the interaction between phthalate monoesters and UGT isoforms. All these information will be beneficial for understanding the adverse effects of PAEs.
Collapse
Affiliation(s)
- Zuo Du
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Yun-Feng Cao
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Sai-Nan Li
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Cui-Min Hu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi-Wei Fu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | | | | | - Yong-Zhe Liu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Kun Yang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China.
| |
Collapse
|
10
|
Cao YF, Du Z, Zhu ZT, Sun HZ, Fu ZW, Yang K, Liu YZ, Hu CM, Dong PP, Gonzalez FJ, Fang ZZ. Inhibitory effects of fifteen phthalate esters in human cDNA-expressed UDP-glucuronosyltransferase supersomes. CHEMOSPHERE 2017; 185:983-990. [PMID: 28753904 PMCID: PMC6331009 DOI: 10.1016/j.chemosphere.2017.07.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 05/06/2023]
Abstract
Phthalate esters (PAEs) have been extensively used in industry as plasticizers and there remains concerns about their safety. The present study aimed to determine the inhibition of phthalate esters (PAEs) on the activity of the phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs). In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone was used to investigate the inhibition potentials of PAEs towards various s UGTs. PAEs exhibited no significant inhibition of UGT1A1, UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17, and limited inhibition of UGT1A6, UGT1A7 and UGT2B4. However, UGT1A9 was strongly inhibited by PAEs. In silico docking demonstrated a significant contribution of hydrogen bonds and hydrophobic interactions contributing to the inhibition of UGT by PAEs. The Ki values were 15.5, 52.3, 23.6, 12.2, 5.61, 2.79, 1.07, 22.8, 0.84, 73.7, 4.51, 1.74, 0.58, 6.79, 4.93, 6.73, and 7.23 μM for BBOP-UGT1A6, BBZP-UGT1A6, BBOP-UGT1A7, BBZP-UGT1A7, DiPP-UGT1A9, DiBP-UGT1A9, DCHP-UGT1A9, DBP-UGT1A9, BBZP-UGT1A9, BBOP-UGT1A9, DMEP-UGT1A9, DPP-UGT1A9, DHP-UGT1A9, DiBP-UGT2B4, DBP-UGT2B4, DAP-UGT2B4, and BBZP-UGT2B4, respectively. In conclusion, exposure to PAEs might influence the metabolic elimination of endogenous compounds and xenobiotics through inhibiting UGTs.
Collapse
Affiliation(s)
- Yun-Feng Cao
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Zuo Du
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Zhi-Tu Zhu
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Hong-Zhi Sun
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Zhi-Wei Fu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China; Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Kun Yang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Yong-Zhe Liu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Cui-Min Hu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pei-Pei Dong
- Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China.
| |
Collapse
|
11
|
Knudsen TB, Klieforth B, Slikker W. Programming microphysiological systems for children's health protection. Exp Biol Med (Maywood) 2017; 242:1586-1592. [PMID: 28658972 DOI: 10.1177/1535370217717697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microphysiological systems (MPS) and computer simulation models that recapitulate the underlying biology and toxicology of critical developmental transitions are emerging tools for developmental effects assessment of drugs/chemicals. Opportunities and challenges exist for their application to alternative, more public health relevant and efficient chemical toxicity testing methods. This is especially pertinent to children's health research and the evaluation of complex embryological and reproductive impacts of drug/chemical exposure. Scaling these technologies to higher throughput is a key challenge and drives the need for in silico models for quantitative prediction of developmental toxicity to inform safety assessments. One example is cellular agent-based models, constructed from extant embryology, that produce data useful to simulate critical developmental transitions and thereby predict phenotypic consequences of disruption in silico. Biologically inspired MPS models built from human induced pluripotent stem (iPS)-derived cells and synthetic matrices that recapitulate organ-specific physiologies and native tissue architectures are providing exciting new research opportunities to advance the assessment of developmental toxicity and offer the possibility of deriving a full 'human on a chip' system, or a 'Homunculus.' Impact statement This 'commentary' summarizes research needs and opportunities for engineered MPS models for developmental and reproductive toxicity testing. Emerging concepts can be taken forward to a virtual tissue modeling framework for assessing chemical (and non-chemical) stressors on human development. These models will advance children's health research, both basic and translational and new ways to evaluate complex embryological and reproductive impacts of drug and chemical exposures to inform safety assessments.
Collapse
Affiliation(s)
- T B Knudsen
- 1 National Center for Computational Toxicology/EPA, Research Triangle Park, NC 27711, USA
| | - B Klieforth
- 2 National Center for Environmental Research/EPA, Washington, DC 20460, USA
| | - W Slikker
- 3 National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
| |
Collapse
|
12
|
Rendel F, Alfredsson CF, Bornehag C, Sundström BE, Nånberg E. Retracted: Effects of Di‐isononyl Phthalate on Neuropeptide Y Expression in Differentiating Human Neuronal Cells. Basic Clin Pharmacol Toxicol 2017; 120:318-323. [DOI: 10.1111/bcpt.12670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Filip Rendel
- Biomedical Sciences Karlstad University Karlstad Sweden
| | | | - Carl‐Gustaf Bornehag
- Public Health Science Department of Health Sciences Faculty of Health, Science and Technology Karlstad University Karlstad Sweden
- Icahn School of Medicine at Mount Sinai New York NYUSA
| | | | - Eewa Nånberg
- Biomedical Sciences Karlstad University Karlstad Sweden
| |
Collapse
|