1
|
Park J, Moon SK, Lee C. N-methylsansalvamide elicits antitumor effects in colon cancer cells in vitro and in vivo by regulating proliferation, apoptosis, and metastatic capacity. Front Pharmacol 2023; 14:1146966. [PMID: 37007044 PMCID: PMC10060634 DOI: 10.3389/fphar.2023.1146966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
N-methylsansalvamide (MSSV), a cyclic pentadepsipeptide, was obtained from a strain of Fusarium solani f. radicicola. The current study investigated the anti-colorectal cancer effect of MSSV. MSSV exhibited the inhibition of the proliferation in HCT116 cells via induction of G0/G1 cell cycle arrest by downregulating CDK 2, CDK6, cyclin D, and cyclin E, and upregulating p21WAF1 and p27KIP1. Decreased phosphorylation of AKT was observed in MSSV-treated cells. Moreover, MSSV treatment induced caspase-mediated apoptosis through elevating the level of cleaved caspase 3, cleaved PARP, cleaved caspase 9, and pro-apoptotic Bax. MSSV revealed the declined MMP-9 level mediated by reduction in the binding activity of AP-1, Sp-1, and NF-κB motifs, which led to the migration and invasion of HCT116 cells. In vitro metabolism with rat liver S9 fractions was performed to examine the effect of MSSV metabolites. The metabolic process enhanced the inhibitory effect of MSSV on the HCT116 cell proliferation via decline of cyclin D1 expression and AKT phosphorylation. Finally, oral administration of MSSV inhibited the tumor growth of HCT116 xenograft mice. These results suggest that MSSV is a potential anti-tumor agent in colorectal cancer treatment.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju, Republic of Korea
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
- *Correspondence: Sung-Kwon Moon, ; Chan Lee,
| | - Chan Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Republic of Korea
- *Correspondence: Sung-Kwon Moon, ; Chan Lee,
| |
Collapse
|
2
|
Miyamoto Y, Koshidaka Y, Murase K, Kanno S, Noguchi H, Miyado K, Ikeya T, Suzuki S, Yagi T, Teramoto N, Hayashi S. Functional Evaluation of 3D Liver Models Labeled with Polysaccharide Functionalized Magnetic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7823. [PMID: 36363415 PMCID: PMC9658042 DOI: 10.3390/ma15217823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Establishing a rapid in vitro evaluation system for drug screening is essential for the development of new drugs. To reproduce tissues/organs with functions closer to living organisms, in vitro three-dimensional (3D) culture evaluation using microfabrication technology has been reported in recent years. Culture on patterned substrates with controlled hydrophilic and hydrophobic regions (Cell-ableTM) can create 3D liver models (miniature livers) with liver-specific Disse luminal structures and functions. MRI contrast agents are widely used as safe and minimally invasive diagnostic methods. We focused on anionic polysaccharide magnetic iron oxide nanoparticles (Resovist®) and synthesized the four types of nanoparticle derivatives with different properties. Cationic nanoparticles (TMADM) can be used to label target cells in a short time and have been successfully visualized in vivo. In this study, we examined the morphology of various nanoparticles. The morphology of various nanoparticles showed relatively smooth-edged spherical shapes. As 3D liver models, we prepared primary hepatocyte-endothelial cell heterospheroids. The toxicity, CYP3A, and albumin secretory capacity were evaluated in the heterospheroids labeled with various nanoparticles. As the culture period progressed, the heterospheroids labeled with anionic and cationic nanoparticles showed lower liver function than non-labeled heterospheroids. In the future, there is a need to improve the method of creation of artificial 3D liver or to design a low-invasive MRI contrast agent to label the artificial 3D liver.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Mechanical Engineering, Tokyo Institute of Technology, 12-2-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yumie Koshidaka
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Katsutoshi Murase
- Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Kaechi, Nishibiwajima, Kiyosu, Aichi 452-0067, Japan
| | - Shoichiro Kanno
- Department of Mechanical Engineering, Tokyo Institute of Technology, 12-2-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takeshi Ikeya
- Photosensitive Materials Research Center, Toyo Gosei Co., Ltd., 4-2-1 Wakahagi, Inzai-shi, Chiba 270-1609, Japan
| | - Satoshi Suzuki
- Research Laboratories, HAB Research Organization, Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan
| | - Tohru Yagi
- Department of Mechanical Engineering, Tokyo Institute of Technology, 12-2-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
3
|
Temple J, Velliou E, Shehata M, Lévy R, Gupta P. Current strategies with implementation of three-dimensional cell culture: the challenge of quantification. Interface Focus 2022; 12:20220019. [PMID: 35992772 PMCID: PMC9372643 DOI: 10.1098/rsfs.2022.0019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
From growing cells in spheroids to arranging them on complex engineered scaffolds, three-dimensional cell culture protocols are rapidly expanding and diversifying. While these systems may often improve the physiological relevance of cell culture models, they come with technical challenges, as many of the analytical methods used to characterize traditional two-dimensional (2D) cells must be modified or replaced to be effective. Here we review the advantages and limitations of quantification methods based either on biochemical measurements or microscopy imaging. We focus on the most basic of parameters that one may want to measure, the number of cells. Precise determination of this number is essential for many analytical techniques where measured quantities are only meaningful when normalized to the number of cells (e.g. cytochrome p450 enzyme activity). Thus, accurate measurement of cell number is often a prerequisite to allowing comparisons across different conditions (culturing conditions or drug and treatment screening) or between cells in different spatial states. We note that this issue is often neglected in the literature with little or no information given regarding how normalization was performed, we highlight the pitfalls and complications of quantification and call for more accurate reporting to improve reproducibility.
Collapse
Affiliation(s)
- Jonathan Temple
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, University College London, London, UK
| | - Mona Shehata
- Hutchison-MRC Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Raphaël Lévy
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
- Laboratoire for Vascular Translational Science, Université Sorbonne Paris Nord, Bobigny, France
| | - Priyanka Gupta
- Centre for 3D Models of Health and Disease, University College London, London, UK
| |
Collapse
|
4
|
Zulfiqar B, Avery VM. Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opin Drug Discov 2021; 17:151-166. [PMID: 34818139 DOI: 10.1080/17460441.2022.2002843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cutaneous, muco-cutaneous and visceral leishmaniasis occur due to an infection with the protozoan parasite Leishmania. The current therapeutic options are limited mainly due to extensive toxicity, emerging resistance and variation in efficacy based on species and strain of the Leishmania parasite. There exists a high unmet medical need to identify new chemical starting points for drug discovery to tackle the disease. AREAS COVERED The authors have highlighted the recent progress, limitations and successes achieved in assay development for leishmaniasis drug discovery. EXPERT OPINION It is true that sophisticated and robust phenotypic in vitro assays have been developed during the last decade, however limitations and challenges remain with respect to variation in activity reported between different research groups and success in translating in vitro outcomes in vivo. The variability is not only due to strain and species differences but also a lack of well-defined criteria and assay conditions, e.g. culture media, host cell type, assay formats, parasite form used, multiplicity of infection and incubation periods. Thus, there is an urgent need for more physiologically relevant assays that encompass multi-species phenotypic approaches to identify new chemical starting points for leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith University, Brisbane, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith University, Brisbane, Australia.,Discovery Biology, Griffith University Drug Discovery Programme for Cancer Therapeutics, Brisbane, Australia.,School of Environment and Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|
5
|
Spennati G, Horowitz LF, McGarry DJ, Rudzka DA, Armstrong G, Olson MF, Folch A, Yin H. Organotypic platform for studying cancer cell metastasis. Exp Cell Res 2021; 401:112527. [PMID: 33675807 PMCID: PMC8806469 DOI: 10.1016/j.yexcr.2021.112527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Metastasis is the leading cause of mortality in cancer patients. To migrate to distant sites, cancer cells would need to adapt their behaviour in response to different tissue environments. Thus, it is essential to study this process in models that can closely replicate the tumour microenvironment. Here, we evaluate the use of organotypic liver and brain slices to study cancer metastasis. Morphological and viability parameters of the slices were monitored daily over 3 days in culture to assess their stability as a realistic 3D tissue platform for in vitro metastatic assays. Using these slices, we evaluated the invasion of MDA-MB-231 breast cancer cells and of a subpopulation that was selected for increased motility. We show that the more aggressive invasion of the selected cells likely resulted not only from their lower stiffness, but also from their lower adhesion to the surrounding tissue. Different invasion patterns in the brain and liver slices were observed for both subpopulations. Cells migrated faster in the brain slices (with an amoeboid-like mode) compared to in the liver slices (where they migrated with mesenchymal or collective migration-like modes). Inhibition of the Ras/MAPK/ERK pathway increased cell stiffness and adhesion forces, which resulted in reduced invasiveness. These results illustrate the potential for organotypic tissue slices to more closely mimic in vivo conditions during cancer cell metastasis than most in vitro models.
Collapse
Affiliation(s)
- Giulia Spennati
- School of Engineering, University of Glasgow, Glasgow, UK; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Lisa F Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - David J McGarry
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | | | - Garett Armstrong
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Pant AB. The Implementation of the Three Rs in Regulatory Toxicity and Biosafety Assessment: The Indian Perspective. Altern Lab Anim 2021; 48:234-251. [PMID: 33523713 DOI: 10.1177/0261192920986811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Animal models have long served as a basis for scientific experimentation, biomedical research, drug development and testing, disease modelling and toxicity studies, as they are widely thought to provide meaningful, human-relevant predictions. However, many of these systems are resource intensive and time-consuming, have low predictive value and are associated with great social and ethical dilemmas. Often drugs appear to be effective and safe in these classical animal models, but later prove to be ineffective and/or unsafe in clinical trials. These issues have paved the way for a paradigm shift from the use of in vivo approaches, toward the 'science of alternatives'. This has fuelled several research and regulatory initiatives, including the ban on the testing of cosmetics on animals. The new paradigm has been shifted toward increasing the relevance of the models for human predictivity and translational efficacy, and this has resulted in the recent development of many new methodologies, from 3-D bio-organoids to bioengineered 'human-on-a-chip' models. These improvements have the potential to significantly advance medical research globally. This paper offers a stance on the existing strategies and practices that utilise alternatives to animals, and outlines progress on the incorporation of these models into basic and applied research and education, specifically in India. It also seeks to provide a strategic roadmap to streamline the future directions for the country's policy changes and investments. This strategic roadmap could be a useful resource to guide research institutions, industries, regulatory agencies, contract research organisations and other stakeholders in transitioning toward modern approaches to safety and risk assessment that could replace or reduce the use of animals without compromising the safety of humans or the environment.
Collapse
Affiliation(s)
- Aditya B Pant
- System Toxicology and Health Risk Assessment Group, 538266Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Miranda RG, Ferraz ERA, Pereira LC, Dorta DJ. Immunocytochemistry Analysis of HepG2 Cell 3D Culture Encapsulated as Spheroids in Alginate Beads. Methods Mol Biol 2021; 2240:197-206. [PMID: 33423235 DOI: 10.1007/978-1-0716-1091-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
3D Cell culture is an alternative to animal use in many drug development and toxicity studies. The 3D cell culture can mimic and reproduce the original tissue microenvironment, morphology, and mechanical and physiological characteristics, to provide a more realistic and reliable response as compared to two-dimensional cultures. 3D cell culture encapsulated in alginate beads is a very simple and relatively inexpensive tool that is easy to handle and to maintain. The alginate beads function as a scaffold that imprisons cells and allows 3D cell growth, to generate spheroids that can have greater genic expression and cell-cell communication as a nano or microtissue. The HepG2 cell line is a human hepatocellular carcinoma cell derivative. HepG2 cells preserve several of the characteristics of hepatocytes and are therefore often used in toxicity studies. Here, we describe HepG2 cell encapsulation in alginate beads and analyze the resulting spheroids formed within the alginate beads by immunocytochemistry, by staining a certain structure with a specific antibody coupled with a fluorophore. This method preserves the beads and enables cell analysis by confocal microscopy.
Collapse
Affiliation(s)
- Raul Ghiraldelli Miranda
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Lilian Cristina Pereira
- Department of Bioprocesses and Biotechnology, Faculty of Agronomic Sciences of Botucatu, São Paulo State University, Botucatu, SP, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, São Paulo, Brazil
| | - Daniel Junqueira Dorta
- FFCLRP-USP, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
- Instituto Nacional de Tecnologias Alternativas de Detecção, Avaliação Toxicologicae Remoção de Micropututantes e Radioativos (INCT-DATREM), Unesp, Instituto de Química, Araraquara, SP, Brazil.
| |
Collapse
|
8
|
Shao Y, Schiwy A, Glauch L, Henneberger L, König M, Mühlenbrink M, Xiao H, Thalmann B, Schlichting R, Hollert H, Escher BI. Optimization of a pre-metabolization procedure using rat liver S9 and cell-extracted S9 in the Ames fluctuation test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141468. [PMID: 32827816 DOI: 10.1016/j.scitotenv.2020.141468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Many environmental pollutants pose a toxicological hazard only after metabolic activation. In vitro bioassays using cell lines or bacteria have often no or reduced metabolic activity, which impedes their use in the risk assessment. To improve the predictive capability of in vitro assays, external metabolization systems like the liver S9 fraction are frequently combined with in vitro toxicity assays. While it is typical for S9 fractions that samples and testing systems are combined in the same exposure system, we propose to separate the metabolism step and toxicity measurement. This allows for a modular combination of metabolic activation by enzymes isolated from rat liver (S9) or a biotechnological alternative (ewoS9R) with in vitro bioassays that lack metabolic capacity. Benzo(a)pyrene and 2-aminoanthracene were used as model compounds to optimize the conditions for the S9 metabolic degradation/activation step. The Ames assay with Salmonella typhimurium strains TA98 and TA100 was applied to validate the set-up of decoupling the S9 activation/metabolism from the bioassay system. S9 protein concentration of 0.25 mgprotein/mL, a supplement of 0.13 mM NADPH and a pre-incubation time of 100 min are recommended for activation of samples prior to dosing them to in vitro bioassays using the regular dosing protocols of the respective bioassay. EwoS9R performed equally well as Moltox S9, which is a step forward in developing true animal-free in vitro bioassays. After pre-incubation with S9 fraction, chemicals induced bacteria revertants in both the TA98 and the TA100 assay as efficiently as the standard Ames assay. The pre-incubation of chemicals with S9 fraction could serve for a wide range of cellular in vitro assays to efficiently combine activation and toxicity measurement, which may greatly facilitate the application of these assays for chemical hazard assessment and monitoring of environmental samples.
Collapse
Affiliation(s)
- Ying Shao
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany; Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, Shazheng street 174, Shapingba, 400044 Chongqing, China.
| | - Andreas Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany; Department of Evolutionary Ecology and Ecotoxicology, Goethe University, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Lisa Glauch
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Maria König
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Marie Mühlenbrink
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany
| | - Beat Thalmann
- EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany
| | - Rita Schlichting
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany; Department of Evolutionary Ecology and Ecotoxicology, Goethe University, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany; EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany; Eberhard Karls University of Tübingen, Environmental Toxicology, Centre for Applied Geosciences, 72074 Tubingen, Germany
| |
Collapse
|
9
|
Zhou L, Weng Q, Zheng Y, Zhou Y, Li Q, Li F. Uptake and efflux of FL118 and two FL118 derivatives in 3D cell model. Cytotechnology 2019; 71:785-795. [PMID: 31309350 PMCID: PMC6663949 DOI: 10.1007/s10616-019-00322-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Drug uptake and efflux are two of the critical factors required in order to be able to define drug efficacy. This study aims to investigate cytotoxicity and uptake mechanisms of two FL118 analogues (7-Q20 and val-FL118) in parallel with FL118 in three-dimensional multi-cellular spheroids model. The influence of compound concentration, time, temperature, cell lines, and the inhibitors of P-gp, BCRP and LAT1 on drug uptake and efflux were investigated. In vitro cytotoxicity studies revealed that FL118, 7-Q20 and val-FL118 exhibited sensitive cytotoxicity to the HCT-116 cell line and the water-soluble compound 7-Q20 showed the lowest IC50. Cellular uptake and efflux of FL118 was independent of efflux pump proteins. Uptake and efflux of 7-Q20 were affected by P-gp, which was one of reasons that caused a lower uptake at 37 °C than at 4 °C. The carrier protein LAT1 played a role in the cellular intakes of val-FL118. These findings provided basic information for FL118 and the two novel FL118 derivatives for further development.
Collapse
Affiliation(s)
- Leilei Zhou
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou City, 310014, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qi Weng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yixin Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuqin Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou City, 310014, China.
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
10
|
Natale A, Vanmol K, Arslan A, Van Vlierberghe S, Dubruel P, Van Erps J, Thienpont H, Buzgo M, Boeckmans J, De Kock J, Vanhaecke T, Rogiers V, Rodrigues RM. Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Arch Toxicol 2019; 93:1789-1805. [PMID: 31037322 DOI: 10.1007/s00204-019-02465-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Stem cells are characterized by their self-renewal capacity and their ability to differentiate into multiple cell types of the human body. Using directed differentiation strategies, stem cells can now be converted into hepatocyte-like cells (HLCs) and therefore, represent a unique cell source for toxicological applications in vitro. However, the acquired hepatic functionality of stem cell-derived HLCs is still significantly inferior to primary human hepatocytes. One of the main reasons for this is that most in vitro models use traditional two-dimensional (2D) setups where the flat substrata cannot properly mimic the physiology of the human liver. Therefore, 2D-setups are progressively being replaced by more advanced culture systems, which attempt to replicate the natural liver microenvironment, in which stem cells can better differentiate towards HLCs. This review highlights the most recent cell culture systems, including scaffold-free and scaffold-based three-dimensional (3D) technologies and microfluidics that can be employed for culture and hepatic differentiation of stem cells intended for hepatotoxicity testing. These methodologies have shown to improve in vitro liver cell functionality according to the in vivo liver physiology and allow to establish stem cell-based hepatic in vitro platforms for the accurate evaluation of xenobiotics.
Collapse
Affiliation(s)
- Alessandra Natale
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Koen Vanmol
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Aysu Arslan
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | | | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
11
|
Weng Q, Zhou L, Xia L, Zheng Y, Zhang X, Li F, Li Q. In vitro evaluation of FL118 and 9-Q20 cytotoxicity and cellular uptake in 2D and 3D different cell models. Cancer Chemother Pharmacol 2019; 84:527-537. [DOI: 10.1007/s00280-019-03846-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
|
12
|
Docci L, Parrott N, Krähenbühl S, Fowler S. Application of New Cellular and Microphysiological Systems to Drug Metabolism Optimization and Their Positioning Respective to In Silico Tools. SLAS DISCOVERY 2019; 24:523-536. [PMID: 30817893 DOI: 10.1177/2472555219831407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New cellular model systems for drug metabolism applications, such as advanced 2D liver co-cultures, spheroids, and microphysiological systems (MPSs), offer exciting opportunities to reproduce human biology more closely in vitro with the aim of improving predictions of pharmacokinetics, drug-drug interactions, and efficacy. These advanced cellular systems have quickly become established for human intrinsic clearance determination and have been validated for several other absorption, distribution, metabolism, and excretion (ADME) applications. Adoption will be driven through the demonstration of clear added value, for instance, by more accurate and precise clearance predictions and by more reliable extrapolation of drug interaction potential leading to faster progression to pivotal proof-of-concept studies. New experimental systems are attractive when they can (1) increase experimental capacity, removing optimization bottlenecks; (2) improve measurement quality of ADME properties that impact pharmacokinetics; and (3) enable measurements to be made that were not previously possible, reducing risk in ADME prediction and candidate selection. As new systems become established, they will find their place in the repository of tools used at different stages of the research and development process, depending on the balance of value, throughput, and cost. In this article, we give a perspective on the integration of these new methodologies into ADME optimization during drug discovery, and the likely applications and impacts on drug development.
Collapse
Affiliation(s)
- Luca Docci
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland.,2 Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Neil Parrott
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | | | - Stephen Fowler
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| |
Collapse
|
13
|
Boeckmans J, Natale A, Buyl K, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Human-based systems: Mechanistic NASH modelling just around the corner? Pharmacol Res 2018; 134:257-267. [PMID: 29964161 DOI: 10.1016/j.phrs.2018.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by excessive triglyceride accumulation in the liver accompanied by inflammation, cell stress and apoptosis. It is the tipping point to the life-threatening stages of non-alcoholic fatty liver disease (NAFLD). Despite the high prevalence of NASH, up to five percent of the global population, there are currently no approved drugs to treat this disease. Animal models, mostly based on specific diets and genetic modifications, are often employed in anti-NASH drug development. However, due to interspecies differences and artificial pathogenic conditions, they do not represent the human situation accurately and are inadequate for testing the efficacy and safety of potential new drugs. Human-based in vitro models provide a more legitimate representation of the human NASH pathophysiology and can be used to investigate the dysregulation of cellular functions associated with the disease. Also in silico methodologies and pathway-based approaches using human datasets, may contribute to a more accurate representation of NASH, thereby facilitating the quest for new anti-NASH drugs. In this review, we describe the molecular components of NASH and how human-based tools can contribute to unraveling the pathogenesis of this disease and be used in anti-NASH drug development. We also propose a roadmap for the development and application of human-based approaches for future investigation of NASH.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Alessandra Natale
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Karolien Buyl
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Vera Rogiers
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Joery De Kock
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Tamara Vanhaecke
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Robim M Rodrigues
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
14
|
Ortega-Prieto AM, Skelton JK, Wai SN, Large E, Lussignol M, Vizcay-Barrena G, Hughes D, Fleck RA, Thursz M, Catanese MT, Dorner M. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun 2018; 9:682. [PMID: 29445209 PMCID: PMC5813240 DOI: 10.1038/s41467-018-02969-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
With more than 240 million people infected, hepatitis B virus (HBV) is a major health concern. The inability to mimic the complexity of the liver using cell lines and regular primary human hepatocyte (PHH) cultures pose significant limitations for studying host/pathogen interactions. Here, we describe a 3D microfluidic PHH system permissive to HBV infection, which can be maintained for at least 40 days. This system enables the recapitulation of all steps of the HBV life cycle, including the replication of patient-derived HBV and the maintenance of HBV cccDNA. We show that innate immune and cytokine responses following infection with HBV mimic those observed in HBV-infected patients, thus allowing the dissection of pathways important for immune evasion and validation of biomarkers. Additionally, we demonstrate that the co-culture of PHH with other non-parenchymal cells enables the identification of the cellular origin of immune effectors, thus providing a valuable preclinical platform for HBV research.
Collapse
Affiliation(s)
- A M Ortega-Prieto
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK
| | - J K Skelton
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK
| | - S N Wai
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK
- Section of Hepatology, Department of Medicine, Imperial College London, London, W2 1NY, UK
| | - E Large
- CN Bio Innovations Ltd, Welwyn Garden City, AL7 3AX, UK
| | - M Lussignol
- Department of Infectious Diseases, King's College London, London, WC2R 2LS, UK
| | - G Vizcay-Barrena
- Centre For Ultrastructural Imaging, King's College London, London, WC2R 2LS, UK
| | - D Hughes
- CN Bio Innovations Ltd, Welwyn Garden City, AL7 3AX, UK
| | - R A Fleck
- Centre For Ultrastructural Imaging, King's College London, London, WC2R 2LS, UK
| | - M Thursz
- Section of Hepatology, Department of Medicine, Imperial College London, London, W2 1NY, UK
| | - M T Catanese
- Department of Infectious Diseases, King's College London, London, WC2R 2LS, UK
| | - M Dorner
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
15
|
Bailey WJ, Glaab W. Derisking drug-induced liver injury from bench to bedside. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|