1
|
Werner S, Hegg L, Hopf NB, Borgatta M, Suter‐Dick L. In Vitro Hepatic Metabolism Input Parameters Support Toxicokinetic Simulations for the Formation of Methoxy Propionic Acid From β-Isomer Propylene Glycol Methyl Ether. Pharmacol Res Perspect 2024; 12:e70037. [PMID: 39655648 PMCID: PMC11629119 DOI: 10.1002/prp2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Propylene glycol ethers (PGEs) are organic solvents commonly found as technical grade on the commercial market, as mixtures of secondary (α-isomer) and primary (β-isomer, generally < 5%) alcohols. After handling products containing PGEs, they readily enter the human body where they are metabolized. The minor β-isomer is oxidized by alcohol dehydrogenase (ADH) followed by aldehyde dehydrogenase (ALDH) to a potentially harmful metabolite. Although the enzymatic rate is needed to estimate both parent and metabolite internal exposures, kinetic data for many PGEs are still scarce. Therefore, we generated in vitro hepatic intrinsic clearance data for propylene glycol methyl ether β-isomer (β-PGME) and its metabolite methoxy propionic acid (2-MPA) and integrated these data into an in silico toxicokinetic (TK) model. Hepatic clearance values for the model were generated using an established in vitro 3D culture of the human HepaRG cell line and human S9 liver fraction. Our results showed the presence of ADH and ALDH and consequently, the formation of 2-MPA in the 3D HepaRG and S9 fraction, which was slow to medium. We integrated the hepatic clearance values into the TK model to predict urinary 2-MPA concentrations. The simulated urinary 2-MPA concentrations fitted well (within twofold error from observed experimental data) for both liver systems, showing that they were both able to reliably predict the hepatic clearance of β-PGME. Although S9 is suitable for short-term studies, 3D cell culture models maintain metabolic competence over days and weeks. This opens the opportunity for long-term metabolism studies applying the 3D HepaRG model alone or in multi-organ systems.
Collapse
Affiliation(s)
- Sophie Werner
- School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
| | - Lucie Hegg
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
- Center for Primary Care and Public Health (Unisanté)University of LausanneLausanneSwitzerland
| | - Nancy B. Hopf
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
- Center for Primary Care and Public Health (Unisanté)University of LausanneLausanneSwitzerland
| | - Myriam Borgatta
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
- Center for Primary Care and Public Health (Unisanté)University of LausanneLausanneSwitzerland
| | - Laura Suter‐Dick
- School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
| |
Collapse
|
2
|
Mi P, Li N, Ai K, Li L, Yuan D. AhR-mediated lipid peroxidation contributes to TCDD-induced cardiac defects in zebrafish. CHEMOSPHERE 2023; 317:137942. [PMID: 36702031 DOI: 10.1016/j.chemosphere.2023.137942] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant that activates the aryl hydrocarbon receptor (AhR) pathway, has been reported to cause cardiac damage. However, the mechanism underlying AhR-induced cardiac defects in response to TCDD exposure remains unclear. In this study, we characterized the impacts of TCDD exposure on heart morphology and cardiac function in zebrafish. TCDD exposure in the early developmental stage of zebrafish embryos led to morphological heart malformation and pericardial edema, concomitant with reduced cardiac function. These cardiac defects were attenuated by inhibiting AhR activity with CH223191. Transcriptome profiling showed that, along with an upregulation of the AhR signaling pathway by TCDD treatment, the expression of pro-ferroptotic genes was upregulated, while that of genes implicated in glutathione metabolism were downregulated. Moreover, lipid peroxidation, as indicated by malonaldehyde (MDA) production, was increased in TCDD-exposed cardiac tissue. Accordingly, inhibiting lipid peroxidation with liproxstatin-1 reversed the adverse cardiac effects induced by TCDD treatment. Taken together, our findings demonstrate that AhR-mediated lipid peroxidation contributes to cardiac defects in the early developmental stage in zebrafish embryos exposed to TCDD.
Collapse
Affiliation(s)
- Ping Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Na Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Ai
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| | - Detian Yuan
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Muñiz-González AB, Novo M, Martínez-Guitarte JL. Persistent pesticides: effects of endosulfan at the molecular level on the aquatic invertebrate Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31431-31446. [PMID: 33608783 DOI: 10.1007/s11356-021-12669-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Although banned in multiple areas, due to its persistence in the environment, endosulfan constitutes a significant environmental concern. In this work, fourth instar Chironomus riparius larvae were exposed at environmentally relevant endosulfan concentrations of 0.1, 1, and 10 μg/L for 24 h to analyze the possible effects of this acaricide on gene expression and enzymatic activity. Transcriptional changes were studied through the implementation of a real-time polymerase chain reaction array with 42 genes related to several metabolic pathways (endocrine system, detoxification response, stress response, DNA reparation, and immune system). Moreover, glutathione-S-transferase (GST), phenoloxidase (PO), and acetylcholinesterase (AChE) activities were assessed. The five pathways were differentially altered by endosulfan exposure with significant changes in the E93, Dis, MAPR, Met, InR, GSTd3, GSTt3, MRP1, hsp70, hsp40, hsp24, ATM, PARP, Proph, and Def genes. Besides, all of the measured enzymatic activities were modified, with increased activity of GST, followed by PO and AChE. In summary, the results reflected the effects provoked in C. riparius at molecular level despite the absence of lethality. These data raise concerns about the strong alteration on different metabolic routes despite the low concentrations used. Therefore, new risk assessment strategies should consider include the effects at the sub-organismal level as endpoints in addition to the classical ecologically relevant parameters (such as survival). This endeavor will facilitate a comprehensive evaluation of toxicants in the environment.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain.
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain
| |
Collapse
|
4
|
Tocmo R, Le B, Heun A, van Pijkeren JP, Parkin K, Johnson JJ. Prenylated xanthones from mangosteen (Garcinia mangostana) activate the AhR and Nrf2 pathways and protect intestinal barrier integrity in HT-29 cells. Free Radic Biol Med 2021; 163:102-115. [PMID: 33310139 PMCID: PMC8647718 DOI: 10.1016/j.freeradbiomed.2020.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Xanthones from the tropical fruit mangosteen (Garcinia mangostana) display anti-inflammatory and anti-oxidative activities. Here, we isolate and identify potential inducers of the aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways from mangosteen using a bioassay-guided strategy. Mangosteen fruit pericarp extracts were subjected to sequential solvent extractions, followed by chromatography coupled with NMR spectroscopy and mass spectrometric analyses for identification and isolation of pure compounds. Isolation of active fractions led to seven prenylated xanthones that were identified and subsequently evaluated for bioactivity. In vitro luciferase reporter cellular assays using H1L6.1c3 (AhR induction) and HepG2-ARE (Nrf2 induction) were used to identify AhR and Nrf2 activators. All seven prenylated xanthones displayed AhR inducing activity, whereas only five xanthones activated Nrf2. Garcinone D (GarD) significantly upregulated AhR/Cyp1a1 and Nrf2/HO-1 protein expression and enhanced zonula occludens-1 and occludin protein levels in HT-29 cells. In addition, GarD inhibited oxidative stress-induced intestinal epithelial barrier dysfunction by enhancing tight junction (TJ) proteins and inhibition of reactive oxygen species production. Inhibition of AhR by pretreating cells with an AhR antagonist revealed that the AhR pathway is required for the improved epithelial barrier functions of GarD. These results highlight a dual mechanism by GarD that confers protection against intestinal epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Bryan Le
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| | - Amber Heun
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| | - Jan Peter van Pijkeren
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| | - Kirk Parkin
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| | - Jeremy James Johnson
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Papaioannou N, Distel E, de Oliveira E, Gabriel C, Frydas IS, Anesti O, Attignon EA, Odena A, Díaz R, Aggerbeck Μ, Horvat M, Barouki R, Karakitsios S, Sarigiannis DA. Multi-omics analysis reveals that co-exposure to phthalates and metals disturbs urea cycle and choline metabolism. ENVIRONMENTAL RESEARCH 2021; 192:110041. [PMID: 32949613 DOI: 10.1016/j.envres.2020.110041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 05/18/2023]
Abstract
This study aimed to evaluate the response of HepaRG cells after co-exposure to phthalates and heavy metals, using a high-dimensional biology paradigm (HDB). Liver is the main metabolism site for the majority of xenobiotics. For this reason, the HepaRG cell line was used as an in vitro model, and cells were exposed to two characteristic mixtures of phthalates and heavy metals containing phthalates (DEHP, DiNP, BBzP) and metals (lead, methylmercury, total mercury) in a concentration-dependent manner. The applied chemical mixtures were selected as the most abundant pollutants in the REPRO_PL and PHIME cohorts, which were studied using the exposome-wide approach in the frame of the EU project HEALS. These studies investigated the environmental causation of neurodevelopmental disorders in neonates and across Europe. The INTEGRA computational platform was used for the calculation of the effective concentrations of the chemicals in the liver through extrapolation from human biomonitoring data and this dose (and a ten-times higher one) was applied to the hepatocyte model. Multi-omics analysis was performed to reveal the genes, proteins, and metabolites affected by the exposure to these chemical mixtures. By extension, we could detect the perturbed metabolic pathways. The generated data were analyzed using advanced bioinformatic tools following the HEALS connectivity paradigm for multi-omics pathway analysis. Co-mapped transcriptomics and proteomics data showed that co-exposure to phthalates and heavy metals leads to perturbations of the urea cycle due to differential expression levels of arginase-1 and -2, argininosuccinate synthase, carbamoyl-phosphate synthase, ornithine carbamoyltransferase, and argininosuccinate lyase. Joint pathway analysis of proteomics and metabolomics data revealed that the detected proteins and metabolites, choline phosphate cytidylyltransferase A, phospholipase D3, group XIIA secretory phospholipase A2, α-phosphatidylcholine, and the a 1,2-diacyl-sn-glycero-3-phosphocholine, are responsible for the homeostasis of the metabolic pathways phosphatidylcholine biosynthesis I, and phospholipases metabolism. The urea, phosphatidylcholine biosynthesis I and phospholipase metabolic pathways are of particular interest since they have been identified also in human samples from the REPRO_PL and PHIME cohorts using untargeted metabolomics analysis and have been associated with impaired psychomotor development in children at the age of two. In conclusion, this study provides the mechanistic evidence that co-exposure to phthalates and metals disturb biochemical processes related to mitochondrial respiration during critical developmental stages, which are clinically linked to neurodevelopmental perturbations.
Collapse
Affiliation(s)
- Nafsika Papaioannou
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Emilie Distel
- INSERM UMR-S 1124, 45 Rue des Saints Pères, 75006, Paris, France; Université de Paris, 45 Rue des Saints Pères, 75006, Paris, France
| | - Eliandre de Oliveira
- Barcelona Science Park, Proteomics Platform, Barcelona Science Park, Barcelona, Spain
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Ilias S Frydas
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Ourania Anesti
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Medical School, University of Crete, Heraklion, 71003, Greece
| | - Eléonore A Attignon
- INSERM UMR-S 1124, 45 Rue des Saints Pères, 75006, Paris, France; Université de Paris, 45 Rue des Saints Pères, 75006, Paris, France
| | - Antonia Odena
- Barcelona Science Park, Proteomics Platform, Barcelona Science Park, Barcelona, Spain
| | - Ramon Díaz
- Barcelona Science Park, Proteomics Platform, Barcelona Science Park, Barcelona, Spain; Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Μartine Aggerbeck
- INSERM UMR-S 1124, 45 Rue des Saints Pères, 75006, Paris, France; Université de Paris, 45 Rue des Saints Pères, 75006, Paris, France
| | | | - Robert Barouki
- INSERM UMR-S 1124, 45 Rue des Saints Pères, 75006, Paris, France; Université de Paris, 45 Rue des Saints Pères, 75006, Paris, France; Service de Biochimie Métabolomique et Protéomique, Hôpital Universitaire Necker Enfants Malades, AP-HP, 75015, Paris, France
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Denis A Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; School for Advanced Study (IUSS), Science, Technology and Society Department, Environmental Health Engineering, Piazza Della Vittoria 15, Pavia, 27100, Italy.
| |
Collapse
|
6
|
Knudsen TB, Pierro JD, Baker NC. Retinoid signaling in skeletal development: Scoping the system for predictive toxicology. Reprod Toxicol 2021; 99:109-130. [PMID: 33202217 PMCID: PMC11451096 DOI: 10.1016/j.reprotox.2020.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
All-trans retinoic acid (ATRA), the biologically active form of vitamin A, is instrumental in regulating the patterning and specification of the vertebrate embryo. Various animal models demonstrate adverse developmental phenotypes following experimental retinoid depletion or excess during pregnancy. Windows of vulnerability for altered skeletal patterning coincide with early specification of the body plan (gastrulation) and regional specification of precursor cell populations forming the facial skeleton (cranial neural crest), vertebral column (somites), and limbs (lateral plate mesoderm) during organogenesis. A common theme in physiological roles of ATRA signaling is mutual antagonism with FGF signaling. Consequences of genetic errors or environmental disruption of retinoid signaling include stage- and region-specific homeotic transformations to severe deficiencies for various skeletal elements. This review derives from an annex in Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97) to support recommendations regarding assay development for the retinoid system and the use of resulting data in a regulatory context for developmental and reproductive toxicity (DART) testing.
Collapse
Affiliation(s)
- Thomas B Knudsen
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Jocylin D Pierro
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Nancy C Baker
- Leidos, Contractor to CCTE, Research Triangle Park, NC, 27711, United States.
| |
Collapse
|
7
|
Sun Y, Tang L, Liu Y, Hu C, Zhou B, Lam PKS, Lam JCW, Chen L. Activation of aryl hydrocarbon receptor by dioxin directly shifts gut microbiota in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113357. [PMID: 31671369 DOI: 10.1016/j.envpol.2019.113357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/12/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Gut microbiota is of critical importance to host health. Aryl hydrocarbon receptor (AhR) is found to be closely involved in the regulation of gut microbial dynamics. However, it is still not clear how AhR signaling shapes the gut microbiota. In the present study, adult zebrafish were acutely exposed to an AhR antagonist (CH223191), an AhR agonist (polychlorinated biphenyl 126; PCB126) or their combination for 7 d. Overall intestinal health and gut microbial community were temporally monitored (1 d, 3 d and 7 d) and inter-compared among different groups. The results showed that single exposure to PCB126 significantly disrupted the overall health of intestines (i.e., neural signaling, inflammation, epithelial barrier integrity, oxidative stress). However, CH223191 failed to inhibit but enhanced the physiological toxicities of PCB126, implying the involvement of extra mechanisms rather than AhR in the regulation of intestinal physiological activities. Dysbiosis of gut microbiota was also caused by PCB126 over time as a function of sex. It is intriguing that CH223191 successfully abolished the holistic effects of dioxin on gut microbiota, which inferred that growth of gut microbes was directly controlled by AhR activation without the involvement of host feedback modulation. When coming to detailed alterations at certain taxon, both antagonistic and synergistic interactions existed between CH223191 and dioxin, depending on fish sex, exposure duration and bacterial species. Correlation analysis found that gut inflammation was positively associated with pathogenic Legionella bacteria, but was negatively associated with epithelial barrier integrity, suggesting that integral intestinal epithelial barrier can prevent the influx of pathogenic bacteria to induce inflammatory response. Overall, this study has deciphered, for the first time, the direct regulative effects of AhR activity on gut microbiota. Future research is warranted to elucidate the specific mechanisms of AhR action on certain bacterial population.
Collapse
Affiliation(s)
- Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China; Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
8
|
Leblanc AF, Attignon EA, Distel E, Karakitsios SP, Sarigiannis DA, Bortoli S, Barouki R, Coumoul X, Aggerbeck M, Blanc EB. A dual mixture of persistent organic pollutants modifies carbohydrate metabolism in the human hepatic cell line HepaRG. ENVIRONMENTAL RESEARCH 2019; 178:108628. [PMID: 31520823 DOI: 10.1016/j.envres.2019.108628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/12/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Individuals as well as entire ecosystems are exposed to mixtures of Persistent Organic Pollutants (POPs). Previously, we showed, by a non-targeted approach, that the expression of several genes involved in carbohydrate metabolism was almost completely inhibited in the human hepatic cell line HepaRG following exposure to a mixture of the organochlorine insecticide alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin. In this European HEALS project, which studies the effects of the exposome on human health, we used a Physiologically Based BioKinetic model to compare the concentrations previously used in vitro with in vivo exposures for humans. We investigated the effects of these POPs on the levels of proteins, on glycogen content, glucose production and the oxidation of glucose into CO2 and correlated them to the expression of genes involved in carbohydrate metabolism as measured by RT-qPCR. Exposure to individual POPs and the mixture decreased the expression of the proteins investigated as well as glucose output (up to 82%), glucose oxidation (up to 29%) and glycogen content (up to 48%). siRNAs that specifically inhibit the expression of several xenobiotic receptors were used to assess receptor involvement in the effects of the POPs. In the HepaRG model, we demonstrate that the effects are mediated by the aryl hydrocarbon receptor and the estrogen receptor alpha, but not the pregnane X receptor or the constitutive androstane receptor. These results provide evidence that exposure to combinations of POPs, acting through different signaling pathways, may affect, more profoundly than single pollutants alone, metabolic pathways such as carbohydrate/energy metabolism and play a potential role in pollutant associated metabolic disorders.
Collapse
Affiliation(s)
- Alix F Leblanc
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Eléonore A Attignon
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Emilie Distel
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Spyros P Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, 54 124, Thessaloniki, Greece.
| | - Dimosthenis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, 54 124, Thessaloniki, Greece; Environmental Health Engineering, Institute for Advanced Study, Pavia, Italy.
| | - Sylvie Bortoli
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Robert Barouki
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France; AP-HP, Hôpital Necker-Enfants Malades, Service de Biochimie Métabolique, 149, rue de Sèvres, 75743, Paris, France.
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Martine Aggerbeck
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| | - Etienne B Blanc
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, 45 rue des Saints Pères, 75006, Paris, France; Université de Paris, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| |
Collapse
|