1
|
Ueki M, Suzuki T, Kato Y. Large-scale cultivation of human iPS cells in bioreactor with reciprocal mixing. J Biosci Bioeng 2024; 137:149-155. [PMID: 38185598 DOI: 10.1016/j.jbiosc.2023.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
A substantial number of human iPS cells (hiPSCs) is needed for cell therapy to be successful against various diseases. We previously reported on a bioreactor with reciprocal mixing that produces specific physical properties that differ from those of conventional bioreactors with rotary paddle stirring. Moreover, such reactors not only provide a homogeneous environment but also allow the control of spheroid size by changing the mixing speed. In this study, we applied this bioreactor to the large-scale cultivation of hiPSCs. Approximately 10 billion hiPSCs were obtained from 2.0 L of culture, and the high expression of pluripotency markers was maintained. Our findings indicate that a bioreactor with reciprocal mixing can be used for large-scale hiPSC cultivation.
Collapse
Affiliation(s)
- Masashi Ueki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshikazu Kato
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Multimix Corporation, 60 Niizo, Toda, Saitama 335-0021, Japan
| |
Collapse
|
2
|
Meijer T, Naderlinger E, Jennings P, Wilmes A. Differentiation and Subculturing of Renal Proximal Tubular-like Cells Derived from Human iPSC. Curr Protoc 2023; 3:e850. [PMID: 37606532 DOI: 10.1002/cpz1.850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Recently, we have developed a protocol to differentiate human induced pluripotent stem cells (iPSC) into proximal tubular-like cells (PTL) (Chandrasekaran et al., 2021). These cells express proximal tubular-specific markers, including megalin, and form a polarized monolayer expressing tight junction proteins, including ZO-3 and occludin. Furthermore, PTL display functional properties, including megalin-facilitated endocytosis, P-glycoprotein (ABCB1) efflux, and respond to parathyroid hormone. Here, we report step-by-step protocols to culture iPSC prior to differentiation (Basic Protocol 1), to differentiate PTL from iPSC (Basic Protocol 2), and to passage and freeze-thaw PTL (Basic Protocol 3). Additionally, we provide a protocol (Basic Protocol 4) to culture PTL on microporous growth supports (transwells). Immunofluorescence stainings for characteristic markers, including megalin, are shown for unpassaged (Basic Protocol 2) and passaged (Basic Protocol 3) PTL. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: iPSC culture Basic Protocol 2: iPSC-derived PTL differentiation Basic Protocol 3: PTL passaging, culturing, and freezing Basic Protocol 4: PTL culturing on transwells Support Protocol 1: Preparation of Geltrex-coated cell culture plates Support Protocol 2: Preparation of RPTEC/TERT1 or fHDF/TERT166-ECM-coated cell culture plates Support Protocol 3: Preparation of human collagen IV-coated cell culture plates Support Protocol 4: Immunofluorescence staining.
Collapse
Affiliation(s)
- Tamara Meijer
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Elisabeth Naderlinger
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Singh P, Chandrasekaran V, Hardy B, Wilmes A, Jennings P, Exner TE. Temporal transcriptomic alterations of cadmium exposed human iPSC-derived renal proximal tubule-like cells. Toxicol In Vitro 2021; 76:105229. [PMID: 34352368 DOI: 10.1016/j.tiv.2021.105229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Cadmium is a well-studied environmental pollutant where the kidney and particularly the proximal tubule cells are especially sensitive as they are exposed to higher concentrations of cadmium than other tissues. Here we investigated the temporal transcriptomic alterations (TempO-Seq) of human induced pluripotent stem cell (iPSC)-derived renal proximal tubule-like (PTL) cells exposed to 5 μM cadmium chloride for 1, 2, 4, 8, 12, 16, 20, 24, 72 and 168 h. There was an early activation (within 4 h) of the metal and oxidative stress responses (metal-responsive transcription factor-1 (MTF1) and nuclear factor erythroid-2-related factor 2 (Nrf2) genes). The Nrf2 response returned to baseline within 24 h. The Activator Protein 1 (AP-1) regulated genes HSPA6 and FOSL-1 followed the Nrf2 time course. While the MTF1 genes also spiked at 4 h, they remained strongly elevated over the entire exposure period. The data and cell culture model utilised will be useful in further research aimed at the refinement of safe human exposure limits for cadmium, other metals and their mixtures.
Collapse
Affiliation(s)
- Pranika Singh
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Vidya Chandrasekaran
- Division of Molecular and Computational Toxicology, Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Barry Hardy
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Thomas E Exner
- Seven Past Nine d.o.o., Hribljane 10, 1380 Cerknica, Slovenia.
| |
Collapse
|
4
|
Del Olmo B, Merkurjev D, Yao L, Pinsach-Abuin ML, Garcia-Bassets I, Almenar-Queralt A. Analysis of Clonal Composition in Human iPSC and ESC and Derived 2D and 3D Differentiated Cultures. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2454:31-47. [PMID: 34505265 DOI: 10.1007/7651_2021_414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human induced pluripotent and embryonic stem cell cultures (hiPSC/hESC) are phenotypically heterogeneous and prone to clonal deviations during subculturing and differentiation. Clonal deviations often emerge unnoticed, but they can change the biology of the cell culture with a negative impact on experimental reproducibility. Here, we describe a computational workflow to profile the bulk clonal composition in a hiPSC/hESC culture that can also be used to infer clonal deviations. This workflow processes data obtained with two versions of the same method. The two versions-epigenetic and transcriptomic-rely on a mechanism of stochastic H3K4me3 deposition during hiPSC/hESC derivation. This mechanism generates a signature of ten or more H3K4me3-enriched clustered protocadherin (PCDH) promoters distinct in every single cell. The aggregate of single-cell signatures provides an identificatory feature in every hiPSC/hESC line. This feature is stably transmitted to the cell progeny of the culture even after differentiation unless there is a clonal deviation event that changes the internal balance of single-cell signatures. H3K4me3 signatures can be profiled by chromatin immunoprecipitation and next-generation sequencing (ChIP-seq). Alternatively, an equivalent PCDH-expression version can be profiled by RNA-seq in PCDH-expressing hiPSC/hESC-derived cells (such as neurons, astrocytes, and cardiomyocytes; and, in long-term cultures, such as cerebral organoids). Notably, our workflow can also distinguish genetically identical hiPSC/hESC lines derived from the same patient or generated in the same editing process. Together, we propose a method to improve data sharing and reproducibility in the hiPSC and hESC fields.
Collapse
Affiliation(s)
- Bernat Del Olmo
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Likun Yao
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mel Lina Pinsach-Abuin
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Boussaad I, Cruciani G, Bolognin S, Antony P, Dording CM, Kwon YJ, Heutink P, Fava E, Schwamborn JC, Krüger R. Integrated, automated maintenance, expansion and differentiation of 2D and 3D patient-derived cellular models for high throughput drug screening. Sci Rep 2021; 11:1439. [PMID: 33446877 PMCID: PMC7809482 DOI: 10.1038/s41598-021-81129-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Patient-derived cellular models become an increasingly powerful tool to model human diseases for precision medicine approaches. The identification of robust cellular disease phenotypes in these models paved the way towards high throughput screenings (HTS) including the implementation of laboratory advanced automation. However, maintenance and expansion of cells for HTS remains largely manual work. Here, we describe an integrated, complex automated platform for HTS in a translational research setting also designed for maintenance and expansion of different cell types. The comprehensive design allows automation of all cultivation steps and is flexible for development of methods for variable cell types. We demonstrate protocols for controlled cell seeding, splitting and expansion of human fibroblasts, induced pluripotent stem cells (iPSC), and neural progenitor cells (NPC) that allow for subsequent differentiation into different cell types and image-based multiparametric screening. Furthermore, we provide automated protocols for neuronal differentiation of NPC in 2D culture and 3D midbrain organoids for HTS. The flexibility of this multitask platform makes it an ideal solution for translational research settings involving experiments on different patient-derived cellular models for precision medicine.
Collapse
Affiliation(s)
- Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, Translational Neuroscience, University of Luxembourg, Luxembourg, Luxembourg
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Gérald Cruciani
- Luxembourg Centre for Systems Biomedicine, Translational Neuroscience, University of Luxembourg, Luxembourg, Luxembourg
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Silvia Bolognin
- Developmental Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine, Translational Neuroscience, University of Luxembourg, Luxembourg, Luxembourg
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Claire M Dording
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Yong-Jun Kwon
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg
- Oncology Department, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen &, Hertie Institute for Clinical Brain Research, Otfried Müller Strasse 23, 72076, Tübingen, Germany
| | - Eugenio Fava
- German Center for Neurodegenerative Diseases (DZNE) - Core Research Facilities and Services - Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Jens C Schwamborn
- Developmental Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, Translational Neuroscience, University of Luxembourg, Luxembourg, Luxembourg.
- Disease Modeling and Screening Platform (DMSP), Luxembourg Centre of Systems Biomedicine (Biomedicine), University of Luxembourg and Luxembourg Institute of Health (LIH), 6 Avenue du Swing, 4367, Belvaux, Luxembourg.
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
| |
Collapse
|
6
|
Jacobson EF, Chen Z, Stoukides DM, Nair GG, Hebrok M, Tzanakakis ES. Non-xenogeneic expansion and definitive endoderm differentiation of human pluripotent stem cells in an automated bioreactor. Biotechnol Bioeng 2020; 118:979-991. [PMID: 33205831 DOI: 10.1002/bit.27629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/13/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Scalable processes are requisite for the robust biomanufacturing of human pluripotent stem cell (hPSC)-derived therapeutics. Toward this end, we demonstrate the xeno-free expansion and directed differentiation of human embryonic and induced pluripotent stem cells to definitive endoderm (DE) in a controlled stirred suspension bioreactor (SSB). Based on previous work on converting hPSCs to insulin-producing progeny, differentiation of two hPSC lines was optimized in planar cultures yielding up to 87% FOXA2+ /SOX17+ cells. Next, hPSCs were propagated in an SSB with controlled pH and dissolved oxygen. Cultures displayed a 10- to 12-fold increase in cell number over 5-6 days with the maintenance of pluripotency (>85% OCT4+ ) and viability (>85%). For differentiation, SSB cultures yielded up to 89% FOXA2+ /SOX17+ cells or ~ 8 DE cells per seeded hPSC. Specification to DE cell fate was consistently more efficient in the bioreactor compared to planar cultures. Hence, a tunable strategy is established that is suitable for the xeno-free manufacturing of DE cells from different hPSC lines in scalable SSBs. This study advances bioprocess development for producing a wide gamut of human DE cell-derived therapeutics.
Collapse
Affiliation(s)
- Elena F Jacobson
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Demetrios M Stoukides
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Gopika G Nair
- Department of Medicine, Diabetes Center, University of California - San Francisco, San Francisco, California, USA
| | - Matthias Hebrok
- Department of Medicine, Diabetes Center, University of California - San Francisco, San Francisco, California, USA
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Developmental, Molecular and Cell Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Michl J, Park KC, Swietach P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun Biol 2019; 2:144. [PMID: 31044169 PMCID: PMC6486606 DOI: 10.1038/s42003-019-0393-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/14/2019] [Indexed: 11/09/2022] Open
Abstract
A fundamental variable in culture medium is its pH, which must be controlled by an appropriately formulated buffering regime, since biological processes are exquisitely sensitive to acid-base chemistry. Although awareness of the importance of pH is fostered early in the training of researchers, there are no consensus guidelines for best practice in managing pH in cell cultures, and reporting standards relating to pH are typically inadequate. Furthermore, many laboratories adopt bespoke approaches to controlling pH, some of which inadvertently produce artefacts that increase noise, compromise reproducibility or lead to the misinterpretation of data. Here, we use real-time measurements of medium pH and intracellular pH under live-cell culture conditions to describe the effects of various buffering regimes, including physiological CO2/HCO3- and non-volatile buffers (e.g. HEPES). We highlight those cases that result in poor control, non-intuitive outcomes and erroneous inferences. To improve data reproducibility, we propose guidelines for controlling pH in culture systems.
Collapse
Affiliation(s)
- Johanna Michl
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT Oxford, UK
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT Oxford, UK
| |
Collapse
|
8
|
Torizal FG, Horiguchi I, Sakai Y. Physiological Microenvironmental Conditions in Different Scalable Culture Systems for Pluripotent Stem Cell Expansion and Differentiation. Open Biomed Eng J 2019. [DOI: 10.2174/1874120701913010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human Pluripotent Stem Cells (PSCs) are a valuable cell type that has a wide range of biomedical applications because they can differentiate into many types of adult somatic cell. Numerous studies have examined the clinical applications of PSCs. However, several factors such as bioreactor design, mechanical stress, and the physiological environment have not been optimized. These factors can significantly alter the pluripotency and proliferation properties of the cells, which are important for the mass production of PSCs. Nutritional mass transfer and oxygen transfer must be effectively maintained to obtain a high yield. Various culture systems are currently available for optimum cell propagation by maintaining the physiological conditions necessary for cell cultivation. Each type of culture system using a different configuration with various advantages and disadvantages affecting the mechanical conditions in the bioreactor, such as shear stress. These factors make it difficult to preserve the cellular viability and pluripotency of PSCs. Additional limitations of the culture system for PSCs must also be identified and overcome to maintain the culture conditions and enable large-scale expansion and differentiation of PSCs. This review describes the different physiological conditions in the various culture systems and recent developments in culture technology for PSC expansion and differentiation.
Collapse
|
9
|
Murphy C, Feifel E, Jennings P, Gstraunthaler G, Wilmes A. A Protocol for One-Step Differentiation of Human Induced Pluripotent Stem Cells into Mature Podocytes. Methods Mol Biol 2019; 1994:93-99. [PMID: 31124107 DOI: 10.1007/978-1-4939-9477-9_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the glomerulus, podocytes are highly specialized visceral epithelial cells that are part of the glomerular filtration barrier. Human podocyte cell culture is rather challenging for primary or immortalized cells, due to the nonproliferative state of the cells. In addition, rapid dedifferentiation is often observed. Hence, iPSC-derived podocytes offer an exciting alternative to culture podocyte-like cells from different donors over prolonged time. Here we report a simple and rapid one-step protocol that drives iPSC into podocyte-like cells in 10 days.
Collapse
Affiliation(s)
- Cormac Murphy
- Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth Feifel
- Division of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Buskin A, Zhu L, Chichagova V, Basu B, Mozaffari-Jovin S, Dolan D, Droop A, Collin J, Bronstein R, Mehrotra S, Farkas M, Hilgen G, White K, Pan KT, Treumann A, Hallam D, Bialas K, Chung G, Mellough C, Ding Y, Krasnogor N, Przyborski S, Zwolinski S, Al-Aama J, Alharthi S, Xu Y, Wheway G, Szymanska K, McKibbin M, Inglehearn CF, Elliott DJ, Lindsay S, Ali RR, Steel DH, Armstrong L, Sernagor E, Urlaub H, Pierce E, Lührmann R, Grellscheid SN, Johnson CA, Lako M. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat Commun 2018; 9:4234. [PMID: 30315276 PMCID: PMC6185938 DOI: 10.1038/s41467-018-06448-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/- mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/- mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.
Collapse
Affiliation(s)
- Adriana Buskin
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Lili Zhu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Valeria Chichagova
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Basudha Basu
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - David Dolan
- Department of Biological Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Alastair Droop
- MRC Medical Bioinformatics Centre, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Revital Bronstein
- Ocular Genomics Institute, Mass Eye and Ear and Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Mass Eye and Ear and Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Michael Farkas
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203-1121, USA
| | - Gerrit Hilgen
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kathryn White
- Electron Microscopy Research Services, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kuan-Ting Pan
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - Achim Treumann
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katarzyna Bialas
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Git Chung
- Newcastle University Protein and Proteome Analysis (NUPPA), Devonshire Building, Devonshire Terrace, Newcastle upon Tyne, NE1 7RU, UK
| | - Carla Mellough
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Yuchun Ding
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Urban Sciences Building, 1 Science Square, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Urban Sciences Building, 1 Science Square, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK
| | - Stefan Przyborski
- Department of Biological Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Simon Zwolinski
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jumana Al-Aama
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, 7393 Al-Malae'b St, Jeddah, 22252, Saudi Arabia
| | - Sameer Alharthi
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, 7393 Al-Malae'b St, Jeddah, 22252, Saudi Arabia
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Gabrielle Wheway
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Katarzyna Szymanska
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Martin McKibbin
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Chris F Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - David H Steel
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Evelyne Sernagor
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - Eric Pierce
- Ocular Genomics Institute, Mass Eye and Ear and Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - Sushma-Nagaraja Grellscheid
- Department of Biological Sciences, Durham University, South Road, Durham, DH1 3LE, UK.
- Computational Biology Unit, Department of Biological Sciences, University of Bergen, Thormohlensgt 55, Bergen, N-5008, Norway.
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
11
|
Rauch C, Feifel E, Kern G, Murphy C, Meier F, Parson W, Beilmann M, Jennings P, Gstraunthaler G, Wilmes A. Differentiation of human iPSCs into functional podocytes. PLoS One 2018; 13:e0203869. [PMID: 30222766 PMCID: PMC6141081 DOI: 10.1371/journal.pone.0203869] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Podocytes play a critical role in glomerular barrier function, both in health and disease. However, in vivo terminally differentiated podocytes are difficult to be maintained in in vitro culture. Induced pluripotent stem cells (iPSCs) offer the unique possibility for directed differentiation into mature podocytes. The current differentiation protocol to generate iPSC-derived podocyte-like cells provides a robust and reproducible method to obtain podocyte-like cells after 10 days that can be employed in in vitro research and biomedical engineering. Previous published protocols were improved by testing varying differentiation media, growth factors, seeding densities, and time course conditions. Modifications were made to optimize and simplify the one-step differentiation procedure. In contrast to earlier protocols, adherent cells for differentiation were used, the use of fetal bovine serum (FBS) was reduced to a minimum, and thus ß-mercaptoethanol could be omitted. The plating densities of iPSC stocks as well as the seeding densities for differentiation cultures turned out to be a crucial parameter for differentiation results. Conditionally immortalized human podocytes served as reference controls. iPSC-derived podocyte-like cells showed a typical podocyte-specific morphology and distinct expression of podocyte markers synaptopodin, podocin, nephrin and WT-1 after 10 days of differentiation as assessed by immunofluorescence staining or Western blot analysis. qPCR results showed a downregulation of pluripotency markers Oct4 and Sox-2 and a 9-fold upregulation of the podocyte marker synaptopodin during the time course of differentiation. Cultured podocytes exhibited endocytotic uptake of albumin. In toxicological assays, matured podocytes clearly responded to doxorubicin (Adriamycin™) with morphological alterations and a reduction in cell viability after 48 h of incubation.
Collapse
Affiliation(s)
- Caroline Rauch
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria
| | - Elisabeth Feifel
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria
| | - Georg Kern
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Florian Meier
- Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety Germany, Biberach an der Riss, Germany
| | - Walther Parson
- Institute of Legal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety Germany, Biberach an der Riss, Germany
| | - Paul Jennings
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria.,Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Anja Wilmes
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria.,Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|