1
|
Segovia-Zafra A, Villanueva-Paz M, Serras AS, Matilla-Cabello G, Bodoque-García A, Di Zeo-Sánchez DE, Niu H, Álvarez-Álvarez I, Sanz-Villanueva L, Godec S, Milisav I, Bagnaninchi P, Andrade RJ, Lucena MI, Fernández-Checa JC, Cubero FJ, Miranda JP, Nelson LJ. Control compounds for preclinical drug-induced liver injury assessment: Consensus-driven systematic review by the ProEuroDILI network. J Hepatol 2024; 81:630-640. [PMID: 38703829 DOI: 10.1016/j.jhep.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND & AIMS Idiosyncratic drug-induced liver injury (DILI) is a complex and unpredictable event caused by drugs, and herbal or dietary supplements. Early identification of human hepatotoxicity at preclinical stages remains a major challenge, in which the selection of validated in vitro systems and test drugs has a significant impact. In this systematic review, we analyzed the compounds used in hepatotoxicity assays and established a list of DILI-positive and -negative control drugs for validation of in vitro models of DILI, supported by literature and clinical evidence and endorsed by an expert committee from the COST Action ProEuroDILI Network (CA17112). METHODS Following 2020 PRISMA guidelines, original research articles focusing on DILI which used in vitro human models and performed at least one hepatotoxicity assay with positive and negative control compounds, were included. Bias of the studies was assessed by a modified 'Toxicological Data Reliability Assessment Tool'. RESULTS A total of 51 studies (out of 2,936) met the inclusion criteria, with 30 categorized as reliable without restrictions. Although there was a broad consensus on positive compounds, the selection of negative compounds lacked clarity. 2D monoculture, short exposure times and cytotoxicity endpoints were the most tested, although there was no consensus on drug concentrations. CONCLUSIONS Extensive analysis highlighted the lack of agreement on control compounds for in vitro DILI assessment. Following comprehensive in vitro and clinical data analysis together with input from the expert committee, an evidence-based consensus-driven list of 10 positive and negative control drugs for validation of in vitro models of DILI is proposed. IMPACT AND IMPLICATIONS Prediction of human toxicity early in the drug development process remains a major challenge, necessitating the development of more physiologically relevant liver models and careful selection of drug-induced liver injury (DILI)-positive and -negative control drugs to better predict the risk of DILI associated with new drug candidates. Thus, this systematic study has crucial implications for standardizing the validation of new in vitro models of DILI. By establishing a consensus-driven list of positive and negative control drugs, the study provides a scientifically justified framework for enhancing the consistency of preclinical testing, thereby addressing a significant challenge in early hepatotoxicity identification. Practically, these findings can guide researchers in evaluating safety profiles of new drugs, refining in vitro models, and informing regulatory agencies on potential improvements to regulatory guidelines, ensuring a more systematic and efficient approach to drug safety assessment.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Marina Villanueva-Paz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ana Sofia Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Gonzalo Matilla-Cabello
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ana Bodoque-García
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - Daniel E Di Zeo-Sánchez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Hao Niu
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - Ismael Álvarez-Álvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Laura Sanz-Villanueva
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy VIC, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Sergej Godec
- Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia; Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Pierre Bagnaninchi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Raúl J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain
| | - M Isabel Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain.
| | - José C Fernández-Checa
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Medicine, Keck School of Division of Gastrointestinal and Liver disease, University of Southern California, Los Angeles, CA, United States.
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Joana Paiva Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Leonard J Nelson
- Institute for Bioengineering, School of Engineering, Faraday Building, The University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
2
|
Takemura A, Ishii S, Ikeyama Y, Esashika K, Takahashi J, Ito K. New in vitro screening system to detect drug-induced liver injury using a culture plate with low drug sorption and high oxygen permeability. Drug Metab Pharmacokinet 2023; 52:100511. [PMID: 37531708 DOI: 10.1016/j.dmpk.2023.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 08/04/2023]
Abstract
Drug-induced liver injury (DILI) is a major factor underlying drug withdrawal from the market. Therefore, it is important to predict DILI during the early phase of drug discovery. Metabolic activation and mitochondrial toxicity are good indicators of the potential for DILI. However, hepatocyte function, including drug-metabolizing enzyme activity and mitochondrial function, reportedly decreases under conventional culture conditions; therefore, these conditions fail to precisely detect metabolic activation and mitochondrial toxicity-induced cell death. To resolve this issue, we employed a newly developed cell culture plate with high oxygen permeability and low drug sorption (4-polymethyl-1-pentene [PMP] plate). Under PMP plate conditions, cytochrome P450 (CYP) activity and mitochondrial function were increased in primary rat hepatocytes. Following l-buthionine-sulfoximine-induced glutathione depletion, acetaminophen-induced cell death significantly increased under PMP plate conditions. Additionally, 1-aminobenzotriazole reduced cell death. Moreover, mitochondrial toxicity due to mitochondrial complex inhibitors (ketoconazole, metformin, and phenformin) increased under PMP plate conditions. In summary, PMP plate conditions could improve CYP activity and mitochondrial function in primary rat hepatocytes and potentially detect metabolic activation and mitochondrial toxicity.
Collapse
Affiliation(s)
- Akinori Takemura
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Sanae Ishii
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yugo Ikeyama
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Katsuhiro Esashika
- New Business Solutions Department, Innovative Solutions Center for Information & Communication Technology, Mitsui Chemicals, Inc., Chiba, Japan
| | - Jun Takahashi
- Bio Technology & Medical Materials Department, Synthetic Chemicals Laboratory, R&D Center, Mitsui Chemicals, Inc., Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
3
|
Thiel A, Weishaupt AK, Nicolai MM, Lossow K, Kipp AP, Schwerdtle T, Bornhorst J. Simultaneous quantitation of oxidized and reduced glutathione via LC-MS/MS to study the redox state and drug-mediated modulation in cells, worms and animal tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123742. [PMID: 37209457 DOI: 10.1016/j.jchromb.2023.123742] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Alterations in reduced and oxidized glutathione (GSH/GSSG) levels represent an important marker for oxidative stress and potential disease progression in toxicological research. Since GSH can be oxidized rapidly, using a stable and reliable method for sample preparation and GSH/GSSG quantification is essential to obtain reproducible data. Here we describe an optimised sample processing combined with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, validated for different biological matrices (lysates from HepG2 cells, C. elegans, and mouse liver tissue). To avoid autoxidation of GSH, samples were treated with the thiol-masking agent N-ethylmaleimide (NEM) and sulfosalicylic acid (SSA) in a single step. With an analysis time of 5 min, the developed LC-MS/MS method offers simultaneous determination of GSH and GSSG at high sample throughput with high sensitivity. This is especially interesting with respect of screening for oxidative and protective properties of substances in in vitro and in vivo models, e.g. C. elegans. In addition to method validation parameters (linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, interday, intraday), we verified the method by using menadione and L-buthionine-(S,R)-sulfoximine (BSO) as well established modulators of cellular GSH and GSSG concentrations. Thereby menadione proved to be a reliable positive control also in C. elegans.
Collapse
Affiliation(s)
- Alicia Thiel
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Merle M Nicolai
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Kristina Lossow
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
| | - Anna P Kipp
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany.
| |
Collapse
|
4
|
Takagi M, Yamada M, Utoh R, Seki M. A multiscale, vertical-flow perfusion system with integrated porous microchambers for upgrading multicellular spheroid culture. LAB ON A CHIP 2023; 23:2257-2267. [PMID: 37038847 DOI: 10.1039/d3lc00168g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spheroid formation assisted by microengineered chambers is a versatile approach for morphology-controlled three-dimensional (3D) cell cultivation with physiological relevance to human tissues. However, the limitation in diffusion-based oxygen/nutrient transport has been a critical issue for the densely packed cells in spheroids, preventing maximization of cellular functions and thus limiting their biomedical applications. Here, we have developed a multiscale microfluidic system for the perfusion culture of spheroids, in which porous microchambers, connected with microfluidic channels, were engineered. A newly developed process of centrifugation-assisted replica molding and salt-leaching enabled the formation of single micrometer-sized pores on the chamber surface and in the substrate. The porous configuration generates a vertical flow to directly supply the medium to the spheroids, while avoiding the formation of stagnant flow regions. We created seamlessly integrated, all PDMS/silicone-based microfluidic devices with an array of microchambers. Spheroids of human liver cells (HepG2 cells) were formed and cultured under vertical-flow perfusion, and the proliferation ability and liver cell-specific functions were compared with those of cells cultured in non-porous chambers with a horizontal flow. The presented system realizes both size-controlled formation of spheroids and direct medium supply, making it suitable as a precision cell culture platform for drug development, disease modelling, and regenerative medicine.
Collapse
Affiliation(s)
- Mai Takagi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
5
|
High-content imaging of human hepatic spheroids for researching the mechanism of duloxetine-induced hepatotoxicity. Cell Death Dis 2022; 13:669. [PMID: 35915074 PMCID: PMC9343405 DOI: 10.1038/s41419-022-05042-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Duloxetine (DLX) has been approved for the successful treatment of psychiatric diseases, including major depressive disorder, diabetic neuropathy, fibromyalgia and generalized anxiety disorder. However, since the usage of DLX carries a manufacturer warning of hepatotoxicity given its implication in numerous cases of drug-induced liver injuries (DILI), it is not recommended for patients with chronic liver diseases. In our previous study, we developed an enhanced human-simulated hepatic spheroid (EHS) imaging model system for performing drug hepatotoxicity evaluation using the human hepatoma cell line HepaRG and the support of a pulverized liver biomatrix scaffold, which demonstrated much improved hepatic-specific functions. In the current study, we were able to use this robust model to demonstrate that the DLX-DILI is a human CYP450 specific, metabolism-dependent, oxidative stress triggered complex hepatic injury. High-content imaging analysis (HCA) of organoids exposed to DLX showed that the potential toxicophore, naphthyl ring in DLX initiated oxidative stress which ultimately led to mitochondrial dysfunction in the hepatic organoids, and vice versa. Furthermore, DLX-induced hepatic steatosis and cholestasis was also detected in the exposed EHSs. We also discovered that a novel compound S-071031B, which replaced DLX's naphthyl ring with benzodioxole, showed dramatically lower hepatotoxicities through reducing oxidative stress. Thus, we conclusively present the human-relevant EHS model as an ideal, highly competent system for evaluating DLX induced hepatotoxicity and exploring related mechanisms in vitro. Moreover, HCA use on functional hepatic organoids has promising application prospects for guiding compound structural modifications and optimization in order to improve drug development by reducing hepatotoxicity.
Collapse
|
6
|
Ikuta H, Shimada H, Sakamoto K, Nakamura R, Kawase A, Iwaki M. Species differences in liver microsomal hydrolysis of acyl glucuronide in humans and rats. Xenobiotica 2022; 52:653-660. [PMID: 36190839 DOI: 10.1080/00498254.2022.2131484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acyl glucuronides (AGs) are known as one of the causes of idiosyncratic drug toxicity (IDT). Although AGs can be enzymatically hydrolysed by β-glucuronidase and esterase, much information on their characteristics and species differences is lacking. This study was aimed to clarify species differences in AG hydrolysis between human and rat liver microsomes (HLM and RLM).To evaluate the AG hydrolysis profile, and the contribution of β-glucuronidase and esterase towards AG hydrolysis in HLM and RLM, nonsteroidal anti-inflammatory drugs (NSAIDs) were used. AGs were incubated with 0.1 M Tris-HCl buffer (pH 7.4) and 0.3 mg/mL HLM or RLM in the absence or presence of β-glucuronidase inhibitor, D-saccharic acid 1,4-lactone (D-SL) and esterase inhibitor, phenylmethylsulfonyl fluoride (PMSF).AGs of mefenamic acid (MEF-AG) and etodolac (ETO-AG) showed significantly higher AG hydrolysis rates in RLM than in HLM. Esterases were found to serve as AG hydrolases dominantly in HLM, whereas both esterases and β-glucuronidase equally contribute to AG hydrolysis in RLM. However, MEF-AG and ETO-AG were hydrolysed only by β-glucuronidase.We demonstrated for the first time that the activity of AG hydrolases towards NSAID-AGs differs between humans and rats.
Collapse
Affiliation(s)
| | | | | | - Rena Nakamura
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | | | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka, Japan.,Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan.,Antiaging Center, Kindai University, Osaka, Japan
| |
Collapse
|
7
|
Shimada H, Ikuta H, Kumazawa K, Nomi M, Shiojiri M, Kawase A, Iwaki M. Relationship between the risk of idiosyncratic drug toxicity and formation and degradation profiles of acyl-glucuronide metabolites of nonsteroidal anti-inflammatory drugs in rat liver microsomes. Eur J Pharm Sci 2022; 174:106193. [PMID: 35447304 DOI: 10.1016/j.ejps.2022.106193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 01/17/2023]
Abstract
Acyl glucuronides (AGs) are considered to cause idiosyncratic drug toxicity (IDT), and evaluating the chemical instability of AGs may be useful for predicting the IDT risk of novel drug candidates. However, AGs show variations in their chemical instability, degree of formation, and enzymatic hydrolysis. Therefore, we evaluated the degree of AG formation, enzymatic hydrolysis, and chemical instability in liver microsomes and their relationship with IDT risk. Nonsteroidal anti-inflammatory drugs (NSAIDs) were classified into three categories in terms of their IDT risk as parent drugs: safe (SA), warning (WA), and withdrawn (WDN). To evaluate the enzymatic and non-enzymatic degradation of AG, the parent drugs were incubated with rat liver microsomes in the absence or presence of AG hydrolase inhibitors. The degree of AG formation and disappearance was considered as the rate constant. For all NSAIDs investigated, the number of AGs formed notably increased following addition of AG hydrolase inhibitors. Particularly, AG was produced by WDN drugs at a lower level than that produced by WA and SA drugs in the absence of AG hydrolase inhibitors but was significantly increased after adding AG hydrolase inhibitors. The rate constants of AG formation and non-enzymatic AG disappearance did not significantly differ among the WDN, WA, and SA drugs, whereas the rate constant of enzymatic AG disappearance of WDN drugs tended to be higher than those of WA and SA drugs. In conclusion, we evaluated the enzymatic degradation and chemical instability of AG by simultaneously producing it in liver microsomes. This method enables evaluation of AG degradation without preparing AG. Moreover, we determined the relationship between enzymatic AG degradation in rat liver microsomes and IDT risk.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Hiroyuki Ikuta
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | | | - Manato Nomi
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Mayumi Shiojiri
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Atsushi Kawase
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; Pharmaceutical Research and Technology Institute, Kindai University, Osaka 577-8502, Japan; Antiaging Center, Kindai University, Osaka 577-8502, Japan.
| |
Collapse
|
8
|
Borroto J, Castoldi AF, Chiusolo A, Colagiorgi A, Colas M, Crivellente F, De Lentdecker C, Istace F, Kardassi D, Mangas I, Molnar T, Parra Morte JM, Terron A, Tiramani M. Statement on the BfR opinion regarding the toxicity of 2-chloroethanol. EFSA J 2022; 20:e07147. [PMID: 35237354 PMCID: PMC8875132 DOI: 10.2903/j.efsa.2022.7147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In accordance with Art. 31(1) of Regulation (EC) No 178/2002, the Commission asked EFSA to provide a scientific review on the BfR opinion on the 'Health risk assessment of ethylene oxide residues in sesame seeds' (Opinion No 024/2021) regarding the toxicity of 2-chloroethanol. In addition, EFSA was asked to clarify under which circumstances the use of the MOE approach is considered appropriate. Based on the information available to EFSA, i.e. the studies assessed in the frame of the BfR opinion and additional data provided by stakeholders not assessed by BfR, EFSA considers the genotoxicity of 2-chloroethanol as inconclusive. On this basis, EFSA would not recommend setting reference points for risk assessment or health-based guidance values until the genotoxic potential of 2-chloroethanol is clarified. EFSA therefore recommends performing new in vitro gene mutation and in vitro micronucleus tests with 2-chloroethanol following the recommendations of the most recent OECD technical guidelines to clarify its genotoxic potential. If the result of any of the test is positive, the recommendations of the EFSA Scientific Committee (2011) should be followed. If the genotoxic potential of 2-chloroethanol is finally clarified and overall negative, EFSA would recommend setting the reference point for deriving health-based guidance values based on existing toxicity studies on 2-chloroethanol.
Collapse
|
9
|
Takezawa T, Uzu M. HepG2-NIAS cells, a new subline of HepG2 cells that can enhance not only CYP3A4 activity but also expression of drug transporters and form bile canaliculus-like networks by the oxygenation culture via a collagen vitrigel membrane. J Toxicol Sci 2022; 47:39-50. [PMID: 34987140 DOI: 10.2131/jts.47.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We reported the enhanced liver-specific function and structure of HepG2 cells by the oxygenation culture via a collagen vitrigel membrane (CVM). The cells were conditioned in our laboratory for a long period, so their characteristics may change from the original HepG2 cells registered in RIKEN cell bank (RCB) with the number of 1648 (HepG2-RCB1648 cells). We named the conditioned HepG2-RCB1648 cells in our laboratory as HepG2-NIAS cells. Here, we clarified the features of HepG2 cells with three different culture histories by analyzing their morphology and viability, CYP3A4 activity, the potential to form bile canaliculus-like structures, and the expression of drug transporters. On plastic, HepG2-NIAS cells grew as a monolayer without the formation of large aggregates involving dead cells that were observed in HepG2-RCB1648 cells and HepG2-RCB1886 cells. In the oxygenation culture via a CVM, the CYP3A4 activity of HepG2-NIAS cells increased to almost half level in direct comparison to that of differentiated HepaRG cells cultured on a collagen-coated plate; however, that of HepG2-RCB1648 cells and HepG2-RCB1886 cells was almost not detected. HepG2-NIAS cells formed bile canaliculus-like networks in which fluorescein was accumulated after the exposure of fluorescein diacetate, although HepG2-RCB1648 cells and HepG2-RCB1886 cells did not possess the potential. Also, immunohistological observations revealed that HepG2-NIAS cells remarkably enhanced the expression of drug transporters, NTCP, OATP1B1, OATP1B3, BSEP, MDR1, MRP2, and BCRP. These results suggest that HepG2-NIAS cells are a new subline of HepG2 cells useful for drug development studies. HepG2-NIAS cells were registered in RCB with the number of 4679.
Collapse
Affiliation(s)
- Toshiaki Takezawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Miaki Uzu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| |
Collapse
|
10
|
Bouwmeester MC, Bernal PN, Oosterhoff LA, van Wolferen ME, Lehmann V, Vermaas M, Buchholz MB, Peiffer QC, Malda J, van der Laan LJW, Kramer NI, Schneeberger K, Levato R, Spee B. Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies. Macromol Biosci 2021; 21:e2100327. [PMID: 34559943 DOI: 10.1002/mabi.202100327] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 01/01/2023]
Abstract
There is a need for long-lived hepatic in vitro models to better predict drug induced liver injury (DILI). Human liver-derived epithelial organoids are a promising cell source for advanced in vitro models. Here, organoid technology is combined with biofabrication techniques, which holds great potential for the design of in vitro models with complex and customizable architectures. Here, porous constructs with human hepatocyte-like cells derived from organoids are generated using extrusion-based printing technology. Cell viability of bioprinted organoids remains stable for up to ten days (88-107% cell viability compared to the day of printing). The expression of hepatic markers, transporters, and phase I enzymes increased compared to undifferentiated controls, and is comparable to non-printed controls. Exposure to acetaminophen, a well-known hepatotoxic compound, decreases cell viability of bioprinted liver organoids to 21-51% (p < 0.05) compared to the start of exposure, and elevated levels of damage marker miR-122 are observed in the culture medium, indicating the potential use of the bioprinted constructs for toxicity testing. In conclusion, human liver-derived epithelial organoids can be combined with a biofabrication approach, thereby paving the way to create perfusable, complex constructs which can be used as toxicology- and disease-models.
Collapse
Affiliation(s)
- Manon C Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Paulina N Bernal
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Vivian Lehmann
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Monique Vermaas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Maj-Britt Buchholz
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Quentin C Peiffer
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus Medical Center, Postbus 2040, Rotterdam, 3000 CA, The Netherlands
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, Utrecht, 3584 CM, The Netherlands
- Division of Toxicology, Wageningen University, P.O. box 8000, Wageningen, 6700 EA, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
11
|
Harada K, Kohara H, Yukawa T, Matsumiya K, Shinozawa T. Cell-based high-throughput screening for the evaluation of reactive metabolite formation potential. Toxicol In Vitro 2021; 74:105159. [PMID: 33823239 DOI: 10.1016/j.tiv.2021.105159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 11/18/2022]
Abstract
Here, we established a high-throughput in vitro assay system to predict reactive metabolite (RM) formation. First, we performed the glutathione (GSH) consumption assay to monitor GSH levels as an index of RM formation potential using HepaRG cells pretreated with 500 μM D,L-buthionine-(S,R)-sulfoximine (BSO) and then treated with ticlopidine and diclofenac. Both drugs, under GSH-reduced conditions, significantly decreased relative cellular GSH content by 70% and 34%, respectively, compared with that in cells not pretreated with BSO. Next, we examined the correlation between GSH consumption and covalent binding assays; the results showed good correlation (correlation coefficient = 0.818). We then optimized the test compound concentration for evaluating RM formation potential using 76 validation compound sets, and the highest sensitivity (53%) was observed at 100 μM. Finally, using HepG2 cells, PXB-cells, and human primary hepatocytes, we examined the cell types suitable for evaluating RM formation potential. The expression of CYP3A4 was highest in HepaRG cells, suggesting the highest sensitivity (56.4%) of the GSH consumption assay. Moreover, a co-culture model of PXB-cells and HepaRG cells showed high sensitivity (72.7%) with sufficient specificity (85.7%). Thus, the GSH consumption assay can be used to effectively evaluate RM formation potential in the early stages of drug discovery.
Collapse
Affiliation(s)
- Kosuke Harada
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Kohara
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoya Yukawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, MA 02139, USA
| | - Kouta Matsumiya
- Drug Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
12
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
13
|
Kohara H, Bajaj P, Yamanaka K, Miyawaki A, Harada K, Miyamoto K, Matsui T, Okai Y, Wagoner M, Shinozawa T. High-Throughput Screening to Evaluate Inhibition of Bile Acid Transporters Using Human Hepatocytes Isolated From Chimeric Mice. Toxicol Sci 2020; 173:347-361. [PMID: 31722436 DOI: 10.1093/toxsci/kfz229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholestasis resulting from hepatic bile acid efflux transporter inhibition may contribute to drug-induced liver injury (DILI). This condition is a common safety-related reason for drug attrition and withdrawal. To screen for safety risks associated with efflux transport inhibition, we developed a high-throughput cellular assay for different drug discovery phases. Hepatocytes isolated from chimeric mice with humanized livers presented gene expression resembling that of the human liver and demonstrated apical membrane polarity when sandwiched between Matrigel and collagen. The fluorescent bile acid-derivative cholyl-l-lysyl-fluorescein (CLF) was used to quantify drug-induced efflux transport inhibition in hepatocytes. Cyclosporine inhibited CLF accumulation in the apical bile canalicular lumen in a concentration-dependent manner. The assay had equivalent predictive power to a primary human hepatocyte-based assay and greater predictive power than an assay performed with rat hepatocytes. Predictive power was tested using 45 pharmaceutical compounds, and 91.3% of the compounds with cholestatic potential (21/23) had margins (IC50/Cmax) < 20. In contrast, 90.9% (20/22) of compounds without cholestatic potential had IC50/Cmax>20. Assay sensitivity and specificity were 91.3% and 90.9%, respectively. We suggest that this improved assay performance could result from higher expression of efflux transporters, metabolic pathways, and/or species differences. Given the long-term supply of cells from the same donor, the humanized mouse-derived hepatocyte-based CLF efflux assay could be a valuable tool for predicting cholestatic DILI.
Collapse
Affiliation(s)
- Hiroshi Kohara
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Piyush Bajaj
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts 02139, USA
| | - Kazunori Yamanaka
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Akimitsu Miyawaki
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Kosuke Harada
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Kazumasa Miyamoto
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Toshikatsu Matsui
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Yoshiko Okai
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Matthew Wagoner
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts 02139, USA
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| |
Collapse
|
14
|
Guo X, Seo JE, Petibone D, Tryndyak V, Lee UJ, Zhou T, Robison TW, Mei N. Performance of HepaRG and HepG2 cells in the high-throughput micronucleus assay for in vitro genotoxicity assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:702-717. [PMID: 32981483 DOI: 10.1080/15287394.2020.1822972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The micronucleus (MN) assay is a core test used to evaluate genotoxic potential of xenobiotics. The traditional in vitro MN assay is usually conducted in cells lacking metabolic competency or by supplementing cultures with an exogenous rat S9 metabolic system, which creates a significant assay limitation for detecting genotoxic metabolites. Our previous study demonstrated that compared to HepG2, HepaRG cells exhibited a significantly higher level of CYP450 enzyme activities and detected a greater portion of genotoxic carcinogens requiring metabolic activation using the Comet assay. The aim of this study was to assess the performance of HepaRG cells in the flow cytometry-based MN assay by testing 28 compounds with known genotoxic or carcinogenic modes of action (MoA). HepaRG cells exhibited higher sensitivity (83%) than HepG2 cells (67%) in detecting 12 indirect-acting genotoxicants or carcinogens. The HepaRG MN assay was 100% specific and 93% accurate in detecting genotoxic potential of the 28 compounds. Quantitative comparison of the MN concentration-response data using benchmark dose analysis showed that most of the tested compounds induced higher % MN in HepaRG than HepG2 cells. In addition, HepaRG cells were compatible with the Multiflow DNA damage assay, which predicts the genotoxic MoA of compounds tested. These results suggest that high-throughput flow cytometry-based MN assay may be adapted using HepaRG cells for genotoxicity assessment, and that HepaRG cells appear to be more sensitive than HepG2 cells in detecting genotoxicants or carcinogens that require metabolic activation.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Dayton Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Un Jung Lee
- Department of Medicine, Epidemiology and Population Health, Albert Einstein College of Medicine , Bronx, NY, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration , Rockville, MD, USA
| | - Timothy W Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration , Silver Spring, MD, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| |
Collapse
|
15
|
Oda S, Miyazaki N, Tsuneyama K, Yokoi T. Exacerbation of gefitinib-induced liver injury by glutathione reduction in mice. J Toxicol Sci 2020; 45:493-502. [PMID: 32741899 DOI: 10.2131/jts.45.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gefitinib (GEF) is the first selective tyrosine kinase inhibitor of epidermal growth factor receptor. It is associated with the occurrence of clinical drug-induced liver injury. Although GEF is metabolized to chemically reactive metabolites by cytochrome P450 3A and 1A enzymes and then conjugated to glutathione (GSH), whether these reactive metabolites contribute to GEF-induced toxicity remains unknown. In this study, we investigated whether GSH depletion can sensitize mice to liver injury caused by GEF. Male C57BL/6J mice were intraperitoneally pretreated with L-buthionine (S,R)-sulfoximine (BSO) at 700 mg/kg to inhibit GSH synthesis and then orally administered GEF at 500 mg/kg every 24 hr for 4 consecutive days. The coadministration of BSO and GEF increased plasma alanine aminotransferase (ALT) levels to approximately 700 U/L and 1600 U/L at 72 and 96 hr after the first administration, respectively, whereas the increase in plasma ALT levels in mice receiving GEF at 500 mg/kg alone was limited, suggesting that GSH plays a protective role in GEF-induced liver injury. Histological examination showed nuclear karyorrhexis and sporadic single hepatocyte death in the livers of BSO+GEF coadministered mice. In these mice, the hepatic expression levels of heme oxygenase 1 (Hmox1) and metallothionein 2 (Mt2) mRNA, caspase 3/7 enzymatic activity, and the amounts of 2-thiobarbiuric acid reactive substances were significantly increased, suggesting the presence of oxidative stress, which may be associated with hepatocellular death. Together, these results show that oxidative stress as well as the reactive metabolites of GEF are involved in GEF-induced liver injury in GSH-depleted mice.
Collapse
Affiliation(s)
- Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine
| | - Nanaka Miyazaki
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine
| | - Koichi Tsuneyama
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, Tokushima University Graduate School
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine
| |
Collapse
|
16
|
Abstract
Drug-induced liver injury (DILI) is a leading cause of attrition during the early and late stages of drug development and after a drug is marketed. DILI is generally classified as either intrinsic or idiosyncratic. Intrinsic DILI is dose dependent and predictable (e.g., acetaminophen toxicity). However, predicting the occurrence of idiosyncratic DILI, which has a very low incidence and is associated with severe liver damage, is difficult because of its complex nature and the poor understanding of its mechanism. Considering drug metabolism and pharmacokinetics, we established experimental animal models of DILI for 14 clinical drugs that cause idiosyncratic DILI in humans, which is characterized by the formation of reactive metabolites and the involvement of both innate and adaptive immunity. On the basis of the biomarker data obtained from the animal models, we developed a cell-based assay system that predicts the potential risks of drugs for inducing DILI. These findings increase our understanding of the mechanisms of DILI and may help predict and prevent idiosyncratic DILI due to certain drugs.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
17
|
Matsui T, Miyamoto N, Saito F, Shinozawa T. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Cells and their Application for Drug Safety Study. Curr Pharm Biotechnol 2020; 21:807-828. [PMID: 32321398 DOI: 10.2174/1389201021666200422090952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced toxicity remains one of the leading causes of discontinuation of the drug candidate and post-marketing withdrawal. Thus, early identification of the drug candidates with the potential for toxicity is crucial in the drug development process. With the recent discovery of human- Induced Pluripotent Stem Cells (iPSC) and the establishment of the differentiation protocol of human iPSC into the cell types of interest, the differentiated cells from human iPSC have garnered much attention because of their potential applicability in toxicity evaluation as well as drug screening, disease modeling and cell therapy. In this review, we expanded on current information regarding the feasibility of human iPSC-derived cells for the evaluation of drug-induced toxicity with a focus on human iPSCderived hepatocyte (iPSC-Hep), cardiomyocyte (iPSC-CMs) and neurons (iPSC-Neurons). Further, we CSAHi, Consortium for Safety Assessment using Human iPS Cells, reported our gene expression profiling data with DNA microarray using commercially available human iPSC-derived cells (iPSC-Hep, iPSC-CMs, iPSC-Neurons), their relevant human tissues and primary cultured human cells to discuss the future direction of the three types of human iPSC-derived cells.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Norimasa Miyamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Fumiyo Saito
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | | |
Collapse
|
18
|
Rodrigues DF, Pires das Neves R, Carvalho ATP, Lourdes Bastos M, Costa VM, Carvalho F. In vitro mechanistic studies on α-amanitin and its putative antidotes. Arch Toxicol 2020; 94:2061-2078. [PMID: 32193566 DOI: 10.1007/s00204-020-02718-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
α-Amanitin plays a key role in Amanita phalloides intoxications. The liver is a major target of α-amanitin toxicity, and while RNA polymerase II (RNA Pol II) transcription inhibition is a well-acknowledged mechanism of α-amanitin toxicity, other possible toxicological pathways remain to be elucidated. This study aimed to assess the mechanisms of α-amanitin hepatotoxicity in HepG2 cells. The putative protective effects of postulated antidotes were also tested in this cell model and in permeabilized HeLa cells. α-Amanitin (0.1-20 µM) displayed time- and concentration-dependent cytotoxicity, when evaluated through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and neutral red uptake assays. Additionally, α-amanitin decreased nascent RNA synthesis in a concentration- and time-dependent manner. While α-amanitin did not induce changes in mitochondrial membrane potential, it caused a significant increase in intracellular ATP levels, which was not prevented by incubation with oligomycin, an ATP synthetase inhibitor. Concerning the cell redox status, α-amanitin did not increase reactive species production, but caused a significant increase in total and reduced glutathione, which was abolished by pre-incubation with the inhibitor of gamma-glutamylcysteine synthase, buthionine sulfoximine. None of the tested antidotes [N-acetyl cysteine, silibinin, benzylpenicillin, and polymyxin B (PolB)] conferred any protection against α-amanitin-induced cytotoxicity in HepG2 cells or reversed the inhibition of nascent RNA caused by the toxin in permeabilized HeLa cells. Still, PolB interfered with RNA Pol II activity at high concentrations, though not impacting on α-amanitin observed cytotoxicity. New hepatotoxic mechanisms of α-amanitin were described herein, but the lack of protection observed in clinically used antidotes may reflect the lack of knowledge on their true protection mechanisms and may explain their relatively low clinical efficacy.
Collapse
Affiliation(s)
- Daniela Ferreira Rodrigues
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ricardo Pires das Neves
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Alexandra T P Carvalho
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Maria Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vera M Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
19
|
Seo JE, Tryndyak V, Wu Q, Dreval K, Pogribny I, Bryant M, Zhou T, Robison TW, Mei N, Guo X. Quantitative comparison of in vitro genotoxicity between metabolically competent HepaRG cells and HepG2 cells using the high-throughput high-content CometChip assay. Arch Toxicol 2019; 93:1433-1448. [PMID: 30788552 DOI: 10.1007/s00204-019-02406-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022]
Abstract
In vitro genotoxicity testing that employs metabolically active human cells may be better suited for evaluating human in vivo genotoxicity than current bacterial or non-metabolically active mammalian cell systems. In the current study, 28 compounds, known to have different genotoxicity and carcinogenicity modes of action (MoAs), were evaluated over a wide range of concentrations for the ability to induce DNA damage in human HepG2 and HepaRG cells. DNA damage dose-responses in both cell lines were quantified using a combination of high-throughput high-content (HTHC) CometChip technology and benchmark dose (BMD) quantitative approaches. Assays of metabolic activity indicated that differentiated HepaRG cells had much higher levels of cytochromes P450 activity than did HepG2 cells. DNA damage was observed for four and two out of five indirect-acting genotoxic carcinogens in HepaRG and HepG2 cells, respectively. Four out of seven direct-acting carcinogens were positive in both cell lines, with two of the three negatives being genotoxic mainly through aneugenicity. The four chemicals positive in both cell lines generated HTHC Comet data in HepaRG and HepG2 cells with comparable BMD values. All the non-genotoxic compounds, including six non-genotoxic carcinogens, were negative in HepaRG cells; five genotoxic non-carcinogens also were negative. Our results indicate that the HTHC CometChip assay detects a greater proportion of genotoxic carcinogens requiring metabolic activation (i.e., indirect carcinogens) when conducted with HepaRG cells than with HepG2 cells. In addition, BMD genotoxicity potency estimate is useful for quantitatively evaluating CometChip assay data in a scientifically rigorous manner.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA.,Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Igor Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Matthew Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Timothy W Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA.
| |
Collapse
|
20
|
Metabolic activity testing can underestimate acute drug cytotoxicity as revealed by HepG2 cell clones overexpressing cytochrome P450 2C19 and 3A4. Toxicology 2019; 412:37-47. [DOI: 10.1016/j.tox.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
|
21
|
Comparative hepatic transcriptome analyses revealed possible pathogenic mechanisms of fasiglifam (TAK-875)-induced acute liver injury in mice. Chem Biol Interact 2018; 296:185-197. [DOI: 10.1016/j.cbi.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/16/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
|