1
|
Barhoum S, Garcia-Cortes M, Boudias M, Guerrouache M, Isnard H, Dupuis E, Carbonnier B, Van der Meeren A, Bresson C. Immobilization of controlled Pu:Am ratio on actinide-specific affinity monolith support developed in capillary and coupled to inductively coupled plasma mass spectrometry. Mikrochim Acta 2024; 191:191. [PMID: 38467910 DOI: 10.1007/s00604-024-06274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
The objective of this work was to develop an actinide-specific monolithic support in capillary designed to immobilize precise Pu:Am ratios and its coupling to inductively coupled plasma mass spectrometry (ICP-MS) for immobilized metal affinity chromatography applications. This format offers many advantages, such as reducing the sample amount and waste production, which are of prime importance when dealing with highly active radioelements. Four organic phosphorylated-based monoliths were synthesized in situ through UV photo-polymerization in capillary and characterized. The capillary coupling to ICP-MS was set up in conventional laboratory using Th and Sm as chemical analogues of Pu and Am. A dedicated method was developed to quantify online Th and Sm amounts immobilized on the monolithic capillaries, allowing to select the best monolith candidate poly(BMEP-co-EDMA)adp. By precisely adjusting the elemental composition in the loading solutions and applying the developed quantification method, the controlled immobilization of several Th:Sm molar ratios onto the monolith was successful. Finally, the capillary ICP-MS coupling was transposed in a glove box and by applying the strategy developed to design the monolithic support using Th and Sm, the immobilization of a 10.5 ± 0.2 (RSD = 2.3%, n = 3) Pu:Am molar ratio reflecting Pu ageing over 48 years was achieved in a controlled manner on poly(BMEP-co-EDMA)adp. Hence, the new affinity capillary monolithic support was validated, with only hundred nanograms or less of engaged radioelements and can be further exploited to precisely determine differential interactions of Pu and Am with targeted biomolecules in order to better anticipate the effect of Am on Pu biodistribution.
Collapse
Affiliation(s)
- Sandra Barhoum
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-Sur-Yvette, France
- Sorbonne Université, UPMC, 75005, Paris, France
| | - Marta Garcia-Cortes
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-Sur-Yvette, France
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Marine Boudias
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-Sur-Yvette, France
| | - Mohamed Guerrouache
- Univ Paris Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320, Thiais, France
| | - Hélène Isnard
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-Sur-Yvette, France
| | - Erwan Dupuis
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-Sur-Yvette, France
| | - Benjamin Carbonnier
- Univ Paris Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320, Thiais, France
| | - Anne Van der Meeren
- Laboratory of Radiotoxicology, CEA, Paris-Saclay University, 91297, Arpajon, France
| | - Carole Bresson
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-Sur-Yvette, France.
| |
Collapse
|
2
|
Misael WA, Severo Pereira Gomes A. Core Excitations of Uranyl in Cs 2UO 2Cl 4 from Relativistic Embedded Damped Response Time-Dependent Density Functional Theory Calculations. Inorg Chem 2023; 62:11589-11601. [PMID: 37432868 DOI: 10.1021/acs.inorgchem.3c01302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
X-ray spectroscopies, by their high selectivity and sensitivity to the chemical environment around the atoms probed, provide significant insights into the electronic structures of molecules and materials. Interpreting experimental results requires reliable theoretical models, accounting for environmental, relativistic, electron correlation, and orbital relaxation effects in a balanced manner. In this work, we present a protocol for the simulation of core excited spectra with damped response time-dependent density functional theory based on the Dirac-Coulomb Hamiltonian (4c-DR-TD-DFT), in which environmental effects are accounted for through the frozen density embedding (FDE) method. We showcase this approach for the uranium M4- and L3-edges and oxygen K-edge of the uranyl tetrachloride (UO2Cl42-) unit as found in a host Cs2UO2Cl4 crystal. We have found that the 4c-DR-TD-DFT simulations yield excitation spectra that very closely match the experiment for the uranium M4-edge and the oxygen K-edge, with good agreement for the broad experimental spectra for the L3-edge. By decomposing the complex polarizability in terms of its components, we have been able to correlate our results with angle-resolved spectra. We have observed that for all edges, but in particular the uranium M4-edge, an embedded model in which the chloride ligands are replaced by an embedding potential reproduces rather well the spectral profile obtained for UO2Cl42-. Our results underscore the importance of the equatorial ligands to simulating core spectra at both uranium and oxygen edges.
Collapse
Affiliation(s)
- Wilken Aldair Misael
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | |
Collapse
|
3
|
Griffiths NM, Moureau A, Coudert S, Huet F, Defrance M, Van der Meeren A. Take a Swipe at Actinide Bioavailability: Application of a New In Vitro Method. HEALTH PHYSICS 2023; 124:495-507. [PMID: 37022177 PMCID: PMC10155695 DOI: 10.1097/hp.0000000000001694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT Filter swipe tests are used for routine analyses of actinides in nuclear industrial, research, and weapon facilities as well as following accidental release. Actinide physicochemical properties will determine in part bioavailability and internal contamination levels. The aim of this work was to develop and validate a new approach to predict actinide bioavailability recovered by filter swipe tests. As proof of concept and to simulate a routine or an accidental situation, filter swipes were obtained from a nuclear research facility glove box. A recently-developed biomimetic assay for prediction of actinide bioavailability was adapted for bioavailability measurements using material obtained from these filter swipes. In addition, the efficacy of the clinically-used chelator, diethylenetriamine pentaacetate (Ca-DTPA), to enhance transportability was determined. This report shows that it is possible to evaluate physicochemical properties and to predict bioavailability of filter swipe-associated actinides.
Collapse
Affiliation(s)
| | | | | | | | | | - A. Van der Meeren
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel 91297, France
| |
Collapse
|
4
|
Lai EPC, Li C. Actinide Decorporation: A Review on Chelation Chemistry and Nanocarriers for Pulmonary Administration. Radiat Res 2022; 198:430-443. [PMID: 35943882 DOI: 10.1667/rade-21-00004.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Chelation is considered the best method for detoxification by promoting excretion of actinides (Am, Np, Pu, Th, U) from the human body after internal contamination. Chemical agents that possess carboxylic acid or hydroxypyridinonate groups play a vital role in actinide decorporation. In this review article, we provide considerable background details on the chelation chemistry of actinides with an aim to formulate better decorporation agents. Nanocarriers for pulmonary delivery represent an exciting prospect in the development of novel therapies for actinide decorporation that both reduce toxic side effects of the agent and improve its retention in the body. Recent studies have demonstrated the benefits of using a nebulizer or an inhaler to administer chelating agents for the decorporation of actinides. Effective chelation therapy with large groups of internally contaminated people can be a challenge unless both the agent and the nanocarrier are readily available from strategic national stockpiles for radiological or nuclear emergencies. Sunflower lecithin is particularly adept at alleviating the burden of administration when used to form liposomes as a nanocarrier for pulmonary delivery of diethylenetriamine-pentaacetic acid (DTPA) or hydroxypyridinone (HOPO). Better physiologically-based pharmacokinetic models must be developed for each agent in order to minimize the frequency of multiple doses that can overload the emergency response operations.
Collapse
Affiliation(s)
- Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
5
|
In vitro evidence of the influence of complexation of Pu and Am on uptake by human lung epithelial cells Calu-3. Toxicol In Vitro 2021; 79:105279. [PMID: 34843884 DOI: 10.1016/j.tiv.2021.105279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023]
Abstract
Understanding the mechanisms involved in retention and clearance of actinides from the lungs after accidental intake is essential for the evaluation of the associated radiological risks. Although the absorption of radioelements has been shown in vivo to depend on their nature and physico-chemical properties, their mechanisms of translocation remain unknown. In this study, we have evaluated in vitro the binding and uptake by bronchial epithelial cells Calu-3 of 2 transuranic actinides, plutonium (Pu) and americium (Am), as the first steps of translocation across the pulmonary barrier. For this purpose, Calu-3 cells grown to confluence in 24-well plates were exposed to the radioelements for 24 h under various culture conditions. Two compartments were identified for the association of actinides to cells, corresponding to the membrane bound and internalized fractions. Binding of Pu was slightly higher than of Am, and depended on its initial chemical form (nitrate, citrate, colloids). Uptake of Pu and Am nitrate was higher in serum-free conditions than in supplemented medium, with an active mechanism involved in Pu internalization. Overall, our results suggest that complexation of actinides to bioligands may have an influence on their uptake by pulmonary epithelial cells, and therefore possibly on their subsequent absorption into blood.
Collapse
|
6
|
Van der Meeren A, Drouet G, Devilliers K, Laurent D, Moureau A, Feray A, Lamart S. Evidence for a differential translocation of actinides across human lung epithelial cell monolayer in vitro according to their physicochemical properties and the presence of a chelating agent. Toxicol In Vitro 2020; 70:105035. [PMID: 33132172 DOI: 10.1016/j.tiv.2020.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
The epithelial cell plays a key role in the transfer of radionuclides from lungs to blood following pulmonary exposure. The present study was designed to evaluate the transfer across human lung epithelial cells of various actinides (plutonium, americium and uranium), the influence of the physicochemical properties of plutonium compounds and of the chelating agent diethylene triamine pentaacetic acid (DTPA). To address this question, Calu-3 cells grown in a bicameral culture system were used. The integrity of the epithelial barrier was evaluated by measuring transepithelial electrical resistance (TEER) and the passage of a fluorescent marker, lucifer yellow. Activity measurement in basal compartment following periodic collection of culture medium was made from 2 h to seven days. To facilitate data handling and analysis, the statistical tool STATBIODIS was used. The results indicate differences in transfer for the different elements, and according to Pu physicochemical properties. Though to various extents, the chelating agent DTPA always increased the transfer of Pu and Am across the epithelial cells, without altering the integrity of the epithelial barrier. This in vitro cell culture model, by mimicking translocation of actinides from lungs to blood, can represent a valuable tool to further understand the underlying mechanisms and properties controlling this process.
Collapse
Affiliation(s)
- A Van der Meeren
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France.
| | - G Drouet
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| | - K Devilliers
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| | - D Laurent
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| | - A Moureau
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| | - A Feray
- Paris-Saclay University, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France
| | - S Lamart
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| |
Collapse
|
7
|
Griffiths NM, Van der Meeren A, Angulo JF, Vincent-Naulleau S. Research on the Radiotoxicology of Plutonium Using Animals: Consideration of the 3Rs-Replace, Reduce, Refine. HEALTH PHYSICS 2020; 119:133-140. [PMID: 32301862 DOI: 10.1097/hp.0000000000001258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To characterize the health effects of incorporated plutonium, many experiments have been conducted using different animal models. These range from (1) applied (tissue uptake/retention determination, decorporation therapy efficacy), (2) fundamental (gene expression, cancer induction), and (3) dosimetry models. In recent years, the use of animals for scientific purposes has become a public concern. The application of the 3Rs - Replace (use of alternative methods or animals not considered capable of experiencing pain, suffering, and distress), Reduce (reduction in animal numbers), and Refine (better animal welfare and minimization of suffering, pain and distress) - has increased to address ethical concerns and legislative requirements. The introduction of novel non-animal technologies is also an important factor as complementary options to animal experimentation. In radiotoxicology research, it seems there is a natural tendency to Replace given the possibility of data reuse obtained from contamination cases in man and animal studies. The creation of "registries" and "repositories" for nuclear industry workers (civil and military) is now a rich legacy for radiotoxicological measurements. Similarly, Reduction in animal numbers can be achieved by good experimental planning with prior statistical analyses of animal numbers required to obtain robust data. Multiple measurements in the same animal over time (external body counting, excreta collection) with appropriate detection instruments also allow Reduction. In terms of Refinement, this has become "de rigueur" and a necessity given the societal and legal concerns for animal welfare. For research in radiotoxicology, particularly long-term studies, better housing conditions within the constraints of radiation protection issues for research workers are an important concern. These are all pertinent considerations for the 3Rs remit and future research in radiotoxicology.
Collapse
Affiliation(s)
- Nina M Griffiths
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel, 91297 ARPAJON, France
| | - Anne Van der Meeren
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel, 91297 ARPAJON, France
| | - Jaime F Angulo
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel, 91297 ARPAJON, France
| | - Silvia Vincent-Naulleau
- Bureau des Etudes Biomédicales chez l'Animal, CEA/DRF/D3P/BEBA, 92260 FONTENAY-aux-ROSES, France
| |
Collapse
|
8
|
In vitro assessment of cobalt oxide particle dissolution in simulated lung fluids for identification of new decorporating agents. Toxicol In Vitro 2020; 66:104863. [PMID: 32304792 DOI: 10.1016/j.tiv.2020.104863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/23/2022]
Abstract
Inhalation of 60Co3O4 particles may occur at the work place in nuclear industry. Their low solubility may result in chronic lung exposure to γ rays. Our strategy for an improved therapeutic approach is to enhance particle dissolution to facilitate cobalt excretion, as the dissolved fraction is rapidly eliminated, mainly in urine. In vitro dissolution of Co3O4 particles was assessed with two complementary assays in lung fluid surrogates to mimic a pulmonary contamination scenario. Twenty-one molecules and eleven combinations were selected through an extensive search in the literature, based on dissolution studies of other metal oxides (Fe, Mn, Cu) and tested for dissolution enhancement of cobalt particles after 1-28 days of incubation. DTPA, the recommended treatment following cobalt contamination did not enhance 60Co3O4 particles dissolution when used alone. However, by combining molecules with different properties, such as redox potential and chelating ability, we greatly improved the efficacy of each drug used alone, leading for the highest efficacy, to a 2.7 fold increased dissolution as compared to controls. These results suggest that destabilization of the particle surface is an important initiating event for a good efficacy of chelating drugs, and open new perspectives for the identification of new therapeutic strategies.
Collapse
|