1
|
Direct oral mucosal epithelial transplantation supplies stem cells and promotes corneal wound healing to treat refractory persistent corneal epithelial defects. Exp Eye Res 2022; 215:108934. [PMID: 35007520 DOI: 10.1016/j.exer.2022.108934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Persistent corneal epithelial defects (PED) can lead to irreversible blindness, seriously affecting the social function and life quality of these patients. When it comes to refractory PED, such as limbal stem cell deficiency (LSCD), that does not respond to standard managements, stem cell therapy is an ideal method. Oral mucosal epithelium (OME) abundant with stem cells within the base, is a promising autologous biomaterial, with much resemblance to corneal epithelial structures. In this experiment, uncultured autologous rat OME was directly applied to alkali burned corneas. Clinical evaluations and histological analyses showed that the transplantation accelerated the healing process, presenting faster re-epithelization and better formation of corneal epithelial barrier. To further investigate the therapeutic mechanism, oral epithelium was transplanted to de-epithelialized cornea in vitro for organ culture. It could be observed that the oral epithelial cells could migrate to the corneal surface and form smooth and stratified epithelium. Immunofluorescence staining results showed that the re-formed epithelium derived from OME, maintained stemness and transformed to corneal epithelial phenotype to some extent. Corneal stroma may provide the suitable microenvironment to promote the trans-differentiation of oral stem cells. Thus, both in vivo and in vitro experiments suggested that oral epithelium could play a positive role in treating refractory PED.
Collapse
|
2
|
Li H, Fan TJ, Zou P, Xu B. Diclofenac Sodium Triggers p53-Dependent Apoptosis in Human Corneal Epithelial Cells via ROS-Mediated Crosstalk. Chem Res Toxicol 2020; 34:70-79. [PMID: 33356180 DOI: 10.1021/acs.chemrestox.0c00319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diclofenac sodium (DFS), a nonsteroidal anti-inflammatory drug, is frequently used in ophthalmology, but it causes negative effects on corneas. The mechanisms underlying the toxicities to corneas remains unclear. The present study was designed to assess the cytotoxicity of DFS to human corneal epithelial (HCEP) cells in vitro and further investigate its related mechanisms. The HCEP cells were treated with DFS at different concentrations ranging from 0.003 125% to 0.1%. DFS showed a dose- and time-dependent cytotoxicity to HCEP cells including abnormal morphology and declined viability. The 0.05% DFS-treated HCEP cells presented cell cycle arrest at S phase, reactive oxygen species (ROS) overproduction, and positive staining of phosphorylated H2AX, suggesting that DFS caused ROS-mediated DNA damage. The upregulation of p53 expression, formation of apoptotic body, phosphatidylserine externalization, and DNA ladder demonstrated that the p53-dependent apoptosis pathway was involved in the cytotoxicity of DFS. Furthermore, DFS activated caspase-8, caspase-9, and caspase-3 altered the expression levels of Bcl-2 family proteins including tBid, Bax, and Bcl-2, as well as increased poly(ADP-ribose) polymerase (PARP) cleavage. DFS also induced ΔΨm disruption, resulting in the release of cytochrome c and apoptosis-inducing factor into the cytoplasm. Additionally, the DFS-induced apoptosis was alleviated by p53 inhibitor. Taken together, DFS triggered p53-dependent apoptosis in HCEP cells via ROS-mediated crosstalk between the extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Hui Li
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ting-Jun Fan
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Bin Xu
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266100, China
| |
Collapse
|
3
|
Magny R, Auzeil N, Olivier E, Kessal K, Regazzetti A, Dutot M, Mélik-Parsadaniantz S, Rat P, Baudouin C, Laprévote O, Brignole-Baudouin F. Lipidomic analysis of human corneal epithelial cells exposed to ocular irritants highlights the role of phospholipid and sphingolipid metabolisms in detergent toxicity mechanisms. Biochimie 2020; 178:148-157. [PMID: 32758686 DOI: 10.1016/j.biochi.2020.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Detergent chemicals, widely used in household products, in pharmaceutical, medical, cosmetic and industrial fields, have been linked to side effects and involved in several eye diseases. On the ocular surface, detergents can interfere with the corneal epithelium, the most superficial layer of the cornea, representing a line of defence against external aggression. Despite its major role in numerous biological functions, there is still little data regarding disruption of lipid homeostasis induced by ocular irritants. To this purpose, a lipidomic analysis using UPLC-HRMS/MS-ESI ± was performed on human corneal epithelial (HCE) cells incubated with three widely known ocular irritants: benzalkonium chloride (BAK), sodium lauryl sulfate (SLS) and Triton X-100 (TXT). We found that these ocular irritants lead to a profound modification of the HCE cell lipidome. Indeed, the cell content of ceramide species increased widely while plasmalogens containing polyunsaturated fatty acid species, especially docosahexaenoic acids, decreased. Furthermore, these irritants upregulated the activity of phospholipase A2. The present study demonstrates that BAK, SLS and TXT induced disruption of the cell lipid homeostasis, highlighting that lipids mediate inflammatory and cell death processes induced by detergents in the cornea. Lipidomics may thus be regarded as a valuable tool to investigate new markers of corneal damage.
Collapse
Affiliation(s)
- Romain Magny
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU Foresight, Paris, France; UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France.
| | - Nicolas Auzeil
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | - Elodie Olivier
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | - Karima Kessal
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU Foresight, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | - Anne Regazzetti
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | - Mélody Dutot
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France; Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix le Dantec, 29000 Quimper, France
| | | | - Patrice Rat
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | - Christophe Baudouin
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU Foresight, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Department of Ophthalmology, Hôpital Ambroise Paré, AP HP, 92100, Boulogne, France; Université Versailles St Quentin en Yvelines, Paris Saclay, 78180, Montigny-Le-Bretonneux, France
| | - Olivier Laprévote
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, Paris, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU Foresight, Paris, France; UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|