1
|
Paul S, Hussain NAS, Lillico DME, Suara MA, Ganiyu SO, Gamal El-Din M, Stafford JL. Examining the immunotoxicity of oil sands process affected waters using a human macrophage cell line. Toxicology 2023; 500:153680. [PMID: 38006929 DOI: 10.1016/j.tox.2023.153680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Oil sands process affected water (OSPW) is produced during the surface mining of the oil sands bitumen deposits in Northern Alberta. OSPW contains variable quantities of organic and inorganic components causing toxic effects on living organisms. Advanced Oxidation Processes (AOPs) are widely used to degrade toxic organic components from OSPW including naphthenic acids (NAs). However, there is no established biological procedure to assess the effectiveness of the remediation processes. Our previous study showed that human macrophage cells (THP-1) can be used as a bioindicator system to evaluate the effectiveness of OSPW treatments through examining the proinflammatory gene transcription levels. In the present study, we investigated the immunotoxicological changes in THP-1 cells following exposure to untreated and AOP-treated OSPW. Specifically, using proinflammatory cytokine protein secretion assays we showed that AOP treatment significantly abrogates the ability of OSPW to induce the secretion of IL-1β, IL-6, IL-8, TNF-α, IL-1Ra and MCP-1. By measuring transcriptional activity as well as surface protein expression levels, we also showed that two select immune cell surface markers, CD40 and CD54, were significantly elevated following OSPW exposure. However, AOP treatments abolished the immunostimulatory properties of OSPW to enhance the surface expression of these immune proteins. Finally, a transcriptome-based approach was used to examine the proinflammatory effects of OSPW as well as the abrogation of immunotoxicity following AOP treatments. Overall, this research shows how a human macrophage cell-based biomonitoring system serves as an effective in vitro tool to study the immunotoxicity of OSPW samples before and after targeted remediation strategies.
Collapse
Affiliation(s)
- Sunanda Paul
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Monsuru A Suara
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
2
|
Lillico DME, Hussain NAS, Choo-Yin YY, Qin R, How ZT, El-Din MG, Stafford JL. Using immune cell-based bioactivity assays to compare the inflammatory activities of oil sands process-affected waters from a pilot scale demonstration pit lake. J Environ Sci (China) 2023; 128:55-70. [PMID: 36801042 DOI: 10.1016/j.jes.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/18/2023]
Abstract
In this study, we provide evidence that oil sands process-affected waters (OSPW) contain factors that activate the antimicrobial and proinflammatory responses of immune cells. Specifically, using the murine macrophage RAW 264.7 cell line, we establish the bioactivity of two different OSPW samples and their isolated fractions. Here, we directly compared the bioactivity of two pilot scale demonstration pit lake (DPL) water samples, which included expressed water from treated tailings (termed the before water capping sample; BWC) as well as an after water capping (AWC) sample consisting of a mixture of expressed water, precipitation, upland runoff, coagulated OSPW and added freshwater. Significant inflammatory (i.e. macrophage activating) bioactivity was associated with the AWC sample and its organic fraction (OF), whereas the BWC sample had reduced bioactivity that was primarily associated with its inorganic fraction (IF). Overall, these results indicate that at non-toxic exposure doses, the RAW 264.7 cell line serves as an acute, sensitive and reliable biosensor for the screening of inflammatory constituents within and among discrete OSPW samples.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Yemaya Y Choo-Yin
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Rui Qin
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada.
| |
Collapse
|
3
|
Hussain NAS, Stafford JL. Abiotic and biotic constituents of oil sands process-affected waters. J Environ Sci (China) 2023; 127:169-186. [PMID: 36522051 DOI: 10.1016/j.jes.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/17/2023]
Abstract
The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .
Collapse
Affiliation(s)
- Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada.
| |
Collapse
|
4
|
Remolina MCR, Li Z, Peleato NM. Application of machine learning methods for rapid fluorescence-based detection of naphthenic acids and phenol in natural surface waters. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128491. [PMID: 35739672 DOI: 10.1016/j.jhazmat.2022.128491] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
Approximately 1.4 billion m3 of fluid tailings produced from oil sands mining operations are currently being held in Alberta, Canada and pose a significant risk to the environment if not properly treated and managed. The ability to quantify levels of toxic compounds, such as naphthenic acids (NAs) and phenol, accurately and rapidly in the produced oil sands process-affected water (OSPW) is required to ensure the protection of the surrounding aquatic environment. In this paper, fluorescence techniques are investigated to rapidly quantify NAs and phenol concentrations in natural surface waters. Machine learning approaches were applied to identify relevant spectral features to improve detection accuracy in the presence of background interference from organic matter in natural waters. NAs were relatively easy to detect by all methods, however deep convolutional neural networks (CNN) resulted in optimized performance for phenol with mean absolute errors of 1.78 - 1.81 mg/L and 4.68-5.41 µg/L, respectively. Visualization of spectral areas of importance revealed that deep CNNs utilized logical areas of the fluorescence spectra associated with NAs and phenol signals. Results suggest machine learning approaches to interpreting fluorescence data can accurately predict individual toxic components of OSPW in natural waters at environmentally relevant concentrations.
Collapse
Affiliation(s)
- María Claudia Rincón Remolina
- School of Engineering, The University of British Columbia Okanagan, 1137 Alumni Ave., Kelowna, British Columbia V1V 1V7, Canada.
| | - Ziyu Li
- School of Engineering, The University of British Columbia Okanagan, 1137 Alumni Ave., Kelowna, British Columbia V1V 1V7, Canada
| | - Nicolás M Peleato
- School of Engineering, The University of British Columbia Okanagan, 1137 Alumni Ave., Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
5
|
Bahniuk MS, Ortega VA, Alshememry AK, Stafford JL, Goss GG, Unsworth LD. Effect of amino acid composition of elastin-like polypeptide nanoparticles on nonspecific protein adsorption, macrophage cell viability and phagocytosis. Biopolymers 2021; 112:e23468. [PMID: 34363693 DOI: 10.1002/bip.23468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Development of elastin-like polypeptide (ELP) biomaterials is widespread, but information critical for clinical deployment is limited, with biocompatibility studies focused on a narrow cross-section of ELP sequences. Macrophages can impair biomaterial systems by degrading or isolating the biomaterial and by activating additional immune functions. Their phagocytic response will reveal early immune biocompatibility of ELP nanoparticles (NPs). This study examines that response, induced by the adsorbed protein corona, as a function of ELP guest amino acid, chain length and NP diameter. The breadth of proteins adsorbed to ELP NPs varied, with valine-containing ELP NPs adsorbing fewer types of proteins than leucine-containing constructs. Particle diameter was also a factor, with smaller leucine-containing ELP NPs adsorbing the broadest range of proteins. Macrophage viability was unaffected by the ELP NPs, and their phagocytic capabilities were unimpeded except when incubated with a 500 nm valine-containing 40-mer. This NP significantly decreased the phagocytic capacity of macrophages relative to the control and to a corresponding 500 nm leucine-containing 40-mer. NP size and the proportion of opsonin to dysopsonin proteins likely influenced this outcome. These results suggest that certain combinations of ELP sequence and particle size can result in an adsorbed protein corona, which may hinder macrophage function.
Collapse
Affiliation(s)
- Markian S Bahniuk
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Van A Ortega
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Abdullah K Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|