1
|
Zong L, Wang X, Huo M, Yi F, Huang S, Ling T, Fang Y, Ma F, Zhang X, Guan M. Insights into the synergistic toxicity mechanisms caused by nano- and microplastics with triclosan using a dose-dependent functional genomics approach in Saccharomyces cerevisiae. CHEMOSPHERE 2024; 362:142629. [PMID: 38885766 DOI: 10.1016/j.chemosphere.2024.142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The emergence of polystyrene (PS) nano- and microplastics (NMPs) and triclosan (TCS) as environmental contaminants has raised concerns about their combined toxicities to organisms, but the complex toxicity arising from their interactions and the underlying molecular mechanisms remain obscure to us. In this study, we comprehensively detected the combined toxicity of PS-NMPs and TCS via the dose-dependent yeast functional genomics profiling. Firstly, our findings demonstrated that the combined exposure to PS-NMPs and TCS elicited a synergistic toxic effect in which the toxicity depended on the size of the PS-NMPs. Secondly, we found that TCS exposure, either alone or in combination with PS-NMPs, influenced lipid biosynthetic processes and ATP export pathways, while the unique responsive genes triggered by combined exposure to TCS and PS-NMPs are significantly enriched in mitochondrial translation, ribosomal small subunit assembly, and tRNA wobble uridine modification. Thirdly, our results demonstrated that point of departure (POD) at the pathway level was positively correlated with IC50, and POD was a more sensitive predictor of toxicity than the apical toxicity endpoints. More importantly, our findings suggested that the combined exposure of PS-NMPs in a size-dependent manner not only alleviated the harmful effects of TCS on glycerophospholipid metabolism, but also exacerbated its negative impact on oxidative phosphorylation. Collectively, our study not only provides new insights into the intricate molecular mechanisms that control the combined toxicity of PS-NMPs and TCS, but also confirms the effectiveness of the dose-dependent functional genomics approach in elucidating the molecular mechanisms of the combined toxicity of pollutants.
Collapse
Affiliation(s)
- Linhao Zong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Miaomiao Huo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Fangying Yi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Shan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Tianqi Ling
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yumo Fang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
2
|
Guan M, Cao Y, Wang X, Xu X, Ning C, Qian J, Ma F, Zhang X. Characterizing temporal variability and repeatability of dose-dependent functional genomics approach for evaluating triclosan toxification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165209. [PMID: 37391155 DOI: 10.1016/j.scitotenv.2023.165209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Dose-dependent functional genomics approach has shown great advantage in identifying the molecular initiating event (MIE) of chemical toxification and yielding point of departure (POD) at genome-wide scale. However, POD variability and repeatability derived from experimental design (settings of dose, replicate number, and exposure time) has not been fully determined. In this work, we evaluated POD profiles perturbed by triclosan (TCS) using dose-dependent functional genomics approach in Saccharomyces cerevisiae at multiple time points (9 h, 24 h and 48 h). The full dataset (total 9 concentrations with 6 replicates per treatment) at 9 h was subsampled 484 times to generate subsets of 4 dose groups (Dose A - Dose D with varied concentration range and spacing) and 5 replicate numbers (2 reps - 6 reps). Firstly, given the accuracy of POD and the experimental cost, the POD profiles from 484 subsampled datasets demonstrated that the Dose C group (space narrow at high concentrations and wide dose range) with three replicates was best choice at both gene and pathway levels. Secondly, the variability of POD was found to be relatively robustness and stability across different experimental designs, but POD was more dependent on the dose range and interval than the number of replicates. Thirdly, MIE of TCS toxification was identified to be the glycerophospholipid metabolism pathway at all-time points, supporting the ability of our approach to accurately recognize MIE of chemical toxification at both short- and long-term exposure. Finally, we identified and validated 13 key mutant strains involved in MIE of TCS toxification, which could serve as biomarkers for TCS exposure. Taken together, our work evaluated the repeatability of dose-dependent functional genomics approach and the variability of POD and MIE of TCS toxification, which will benefit the experimental design for future dose-dependent functional genomics study.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Yuqi Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Xinyuan Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Can Ning
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Ave., Nanjing, Jiangsu 210023, China.
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China.
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| |
Collapse
|
3
|
Guan M, Wang X, Pan Y, Xu Y, Cao Y, Yan L, Ma L, Ma F, Zhang X. Delving into the molecular initiating event of cadmium toxification via the dose-dependent functional genomics approach in Saccharomyces cerevisiae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121287. [PMID: 36791950 DOI: 10.1016/j.envpol.2023.121287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Determining dose-response relationship is essential for comprehensively revealing chemical-caused effects on organisms. However, uncertainty and complexity of gene/protein interactions cause the inability of traditional toxicogenomic methods (e.g., transcriptomics, proteomics and metabolomics) to effectively establish the direct relationship between chemical exposure and genes. In this work, we built an effective dose-dependent yeast functional genomics approach, which can clearly identify the direct gene-chemical link in the process of cadmium (Cd) toxification from a genome-wide scale with wide range concentrations (0.83, 2.49, 7.48, 22.45, 67.34, 202.03 and 606.1 μM). Firstly, we identified 220 responsive strains, and found that 142, 110, 91, 34, 8, 0 and 0 responsive strains can be respectively modulated by seven different Cd exposure concentrations ranging from high to low. Secondly, our results demonstrated that these genes induced by the high Cd exposure were mainly enriched in the process of cell autophagy, but ones caused by the low Cd exposure were primarily involved in oxidative stress. Thirdly, we found that the top-ranked GO biological processes with the lowest point of departure (POD) were transmembrane transporter complex and mitochondrial respiratory chain complex III, suggesting that mitochondrion might be the toxicity target of Cd. Similarly, nucleotide excision repair was ranked first in KEGG pathway with the least POD, indicating that this dose-dependent functional genomics approach can effectively detect the molecular initiating event (MIE) of cadmium toxification. Fourthly, we identified four key mutant strains (RIP1, QCR8, CYT1 and QCR2) as biomarkers for Cd exposure. Finally, the dose-dependent functional genomics approach also performed well in identifying MIE for additional genotoxicity chemical 4-nitroquinoline-1-oxide (4-NQO) data. Overall, our study developed a dose-dependent functional genomics approach, which is powerful to delve into the MIE of chemical toxification and is beneficial for guiding further chemical risk assessment.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yi Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yue Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yuqi Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Lili Ma
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of the Environment, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| |
Collapse
|
4
|
Tian M, Xia P, Yan L, Gou X, Yu H, Zhang X. Human functional genomics reveals toxicological mechanism underlying genotoxicants-induced inflammatory responses under low doses exposure. CHEMOSPHERE 2023; 314:137658. [PMID: 36584827 DOI: 10.1016/j.chemosphere.2022.137658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Understanding the toxicological mechanisms of chemicals is essential for accurate assessments of environmental health risks. Inflammation could play a critical role in the adverse health outcomes caused by genotoxicants; however, the toxicological mechanisms underlying genotoxicants-induced inflammatory response are still limited. Here, functional genomics CRISPR screens were performed to enhance the mechanistic understanding of the genotoxicants-induced inflammatory response at low doses exposure. Key genes and pathways associated with the activities of immune cells and the production of cytokines were identified by CRISPR screens of 6 model genotoxicants. Gene network analysis revealed that three genes (TLR10, HCAR2 and TRIM6) were involved in the regulation of neutrophil apoptosis and cytokine release, and TLR10 shared a similar functional pattern with HCAR2 and TRIM6. Furthermore, adverse outcome pathway (AOP) network analysis revealed that TLR10 was involved in the molecular initiating events (MIEs) or key events (KEs) in the inflammatory response AOPs of all the 6 genotoxicants, which provided mechanistic links between TLR10 and genotoxicants-induced inflammation and respiratory diseases. Finally, functional validation tests demonstrated that TLR10 exhibited inhibitory effects on genotoxicants-induced inflammatory responses in both epithelial and immune cells. This study highlights the powerful utility of the integration of CRISPR screen and AOP network analysis in illuminating the toxicological causal mechanisms of environmental chemicals.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
5
|
Guan M, Ji W, Xu Y, Yan L, Chen D, Li S, Zhang X. Molecular fingerprints of polar narcotic chemicals based on heterozygous essential gene knockout library in Saccharomyces cerevisiae. CHEMOSPHERE 2022; 308:136343. [PMID: 36087727 DOI: 10.1016/j.chemosphere.2022.136343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Cytotoxicity of non-polar narcotic chemicals can be predicted by quantitative structure activity relationship (QSAR) models, but the polar narcotic chemicals' actual cytotoxicity exceeds the predicted values by their chemical structures. This discrepancy indicates that the molecular mechanism by which polar narcotic chemicals exert their toxicity is unclear. Taking advantage of Saccharomyces cerevisiae (yeast) functional genome-wide heterozygous essential gene knockout mutants, we here have identified the specific molecular fingerprints of two main chemical structure groups (phenols and anilines) of polar narcotic chemicals (dichlorophen (DCP), 4-chlorophenol (4-CP), 2, 4, 6-trichlorophenol (TCP), 3, 4-dichloroaniline (DCA) and N-methylaniline (NMA)) and one non-polar narcotic chemical 2, 2, 2-trichloroethanol (TCE). Especially, we identify 33, 57, 54, 46, 59 and 53 responsive strains through exposure to TCE, DCP, 4-CP, TCP, DCA and NMA with three test concentrations, respectively, revealing that these polar narcotic chemicals have more responsive strains than the non-polar narcotic chemical. Remarkably, we find that the molecular fingerprints of polar narcotic chemicals in different chemical structure groups are obviously varied, particularly phenols and anilines have their own specific molecular fingerprints. Interestingly, our results demonstrate that the molecular toxicity mechanisms of anilines are associated with DNA replication, but phenols are related with pathway of RNA degradation. Additionally, we find that the two knockout strains (SME1 and DIS3) and the three knockout strains (TSC11, RSP5 and HSF1) can specifically respond to exposure to phenols and anilines, respectively. Thus, they may be served as potential biomarkers to distinguish phenols from anilines. Collectively, our works demonstrate that the functional genomic platform of yeast essential gene mutants can not only act as an effective tool to identify key specific molecular fingerprints for polar narcotic chemicals, but also help to understand the molecular mechanisms of polar narcotic chemicals.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| | - Wenya Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yue Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Dong Chen
- Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu, 210036, China
| | - Shengjie Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China; School of Food Science, Nanjing Xiaozhuang University, Jiangsu, Nanjing, 211171, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China.
| |
Collapse
|