1
|
Lee MJ, Yang SY, Kang MK. Biological, Antifungal, and Physical Efficacy of a Denture Cleanser Formulated with Cnidium officinale Extracts. Biomedicines 2024; 12:2029. [PMID: 39335543 PMCID: PMC11428326 DOI: 10.3390/biomedicines12092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES We aimed to assess the antifungal efficacy and impact of a denture cleanser containing Cnidium officinale extract on the surface characteristics of denture base materials, as well as its physical and biological properties. METHODS The experimental denture cleansers were formulated with C. officinale at concentrations of 100 and 150 μg/mL, combined with 1% cocamidopropyl betaine as a natural surfactant. Antifungal efficacy was evaluated using zone-of-inhibition assays against Candida albicans, revealing inhibition zones of 20 ± 1.8 mm for the 100 μg/mL concentration and 23.6 ± 1.6 mm for the 150 μg/mL concentration. Surface property assessments-including hardness, roughness, color stability, and solubility measurements-demonstrated no significant differences compared to the control group. Biological evaluations included the quantification of polyphenol and flavonoid content. RESULTS The C. officinale-based cleanser showed significant antifungal activity without affecting the hardness, roughness, color stability, or solubility of denture base materials. Biological tests revealed no cytotoxicity and minimal mucosal irritation. Polyphenol and flavonoid contents were quantitatively measured, revealing higher concentrations in the experimental groups, which were correlated with significant antifungal activity. These compounds are known for their roles in disrupting microbial processes and enhancing antimicrobial effects. These findings suggest that the C. officinale-based denture cleanser effectively inhibits C. albicans while preserving the physical properties of denture base materials. CONCLUSIONS This study highlights the potential of C. officinale in denture cleanser formulations, promoting denture hygiene and oral health. Future research should prioritize long-term clinical evaluations and formulation optimization.
Collapse
Affiliation(s)
- Myung-Jin Lee
- Department of Dental Hygiene, Division of Health Science, Baekseok University, Cheonan 31065, Republic of Korea
| | - Song-Yi Yang
- Department of Dental Hygiene, Konyang University, Daejeon 35365, Republic of Korea
| | - Min-Kyung Kang
- Department of Dental Hygiene, Hanseo University, Seosan 31963, Republic of Korea
| |
Collapse
|
2
|
Shafi H, Reddy DVS, Rashid R, Roy T, Kawoosa S, Bader GN, Jvus C, Abdal-Hay A, Beigh MA, Majeed S, Khan NA, Sheikh FA. Optimizing the fabrication of electrospun nanofibers of prochlorperazine for enhanced dissolution and permeation properties. BIOMATERIALS ADVANCES 2024; 158:213773. [PMID: 38277903 DOI: 10.1016/j.bioadv.2024.213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Despite being an approved antiemetic for more than five decades, the clinical usefulness of prochlorperazine is limited by its low solubility and inconsistent absorption in the gastrointestinal tract, which presents challenges for nanotherapeutic interventions. Here, we report the preparation of a highly soluble and permeable nanofiber formulation of prochlorperazine using the Quality-by-Design approach. The final nanofiber formulation with drug entrapment of 88.02 ± 1.14 % was obtained at 20.0 kV, with a flow rate of 0.5 ml/h and tip-to-collector distance of 19.9 cm. Physio-mechanical properties, such as thickness (0.42 ± 0.02 mm), pH resistance (7.04 ± 0.08), folding endurance (54 ± 5), and tensile strength (0.244 ± 0.02 N.mm-2), were appropriate for packaging and application to oromucosal surfaces. The content uniformity (93.48-106.63 %) and weight variation (<1.8 mg) of the optimal nanofiber formulation were within the permissible limits prescribed for orodispersible films. Microscopical investigations confirm a randomly deposited and dense network of woven nanofibers with an average diameter of 363 ± 5.66 nm. The drug particles were embedded homogeneously on the fiber in the nanoform (4.27 ± 1.34 nm). The spectral analysis using TEM-EDS shows diffraction peaks of sulfur and chlorine, the elemental constituents of prochlorperazine. The drug was amorphized in the nanofiber formulation, as led by the decline of the crystallinity index from 87.25 % to 7.93 % due to electrostatic destabilization and flash evaporation of the solvent. The enthalpy of fusion values of the drug in the nanofiber mat decreased significantly to 23.6 J/g compared to its pristine form, which exhibits a value of 260.7 J/g. The nanofibers were biocompatible with oral mucosal cells, and there were no signs of mucosal irritation compared to 1 % sodium lauryl sulfate. The fiber mats rapidly disintegrated within <1 s and released ≈91.49 ± 2.1 % of the drug within 2 min, almost 2-fold compared to the commercial Stemetil MD® tablets. Similarly, the cumulative amount of the drug permeated across the unit area of the oromucosal membrane was remarkably high (31.28 ± 1.30 μg) compared to 10.17 ± 1.11 μg and 13.10 ± 1.79 μg from the cast film and drug suspension. Our results revealed these nanofiber formulations have the potential to be fast-dissolving oromucosal delivery systems, which can result in enhanced bioavailability with an early onset of action due to rapid disintegration, dissolution, and permeation.
Collapse
Affiliation(s)
- Hasham Shafi
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India; Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India; CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - D V Siva Reddy
- CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Rumaisa Rashid
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India; CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Trisha Roy
- CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Shabnam Kawoosa
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - G N Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Chakradhar Jvus
- CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Abdalla Abdal-Hay
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo - Fifth Settlement, Cairo 11835, Egypt; Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt; The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston, QLD 4006, Australia; Cellular Signalling and Nanotherapeutics Laboratory, Department of Nanotechnology, University of KashmirHazratbal, Srinagar, Jammu and Kashmir, India
| | - Mushtaq A Beigh
- Cellular Signalling and Nanotherapeutics Laboratory, Department of Nanotechnology, University of KashmirHazratbal, Srinagar, Jammu and Kashmir, India
| | - Shafquat Majeed
- Laboratory for Multifunctional Nanomaterials, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Nisar Ahmad Khan
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|