Shokoohi-Rad S, Heidarzadeh HR. In Vivo Imaging of Plant Oxygen Levels.
PLANT & CELL PHYSIOLOGY 2021;
62:1251-1258. [PMID:
33725087 PMCID:
PMC8410434 DOI:
10.1093/pcp/pcab039]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Oxygen is essential for multicellular aerobic life due to its central role in energy metabolism. The availability of oxygen can drop below the level to sustain oxidative phosphorylation when plants are flooded, posing a severe threat to survival. However, under non-stressful conditions, the internal oxygen concentration of most plant tissue is not in equilibrium with the environment, which is attributed to cellular respiration and diffusion constrains imposed by O2 barriers and bulky tissue. This is exemplified by the observations of steep oxygen gradients in roots, fruits, tubers, anthers and meristems. To adapt to a varying availability of oxygen, plants sense O2 via the conditional proteolysis of transcriptional regulators. This mechanism acts to switch oxidative metabolism to anaerobic fermentation, but it was also shown to play a role in plant development and pathogen defense. To investigate how dynamic and spatial distribution of O2 impacts on these processes, accurate mapping of its concentration in plants is essential. Physical oxygen sensors have been employed for decades to profile internal oxygen concentrations in plants, while genetically encoded oxygen biosensors have only recently started to see use. Driven by the critical role of hypoxia in human pathology and development, several novel oxygen-sensing devices have also been characterized in cell lines and animal model organisms. This review aims to provide an overview of available oxygen biosensors and to discuss their potential application to image oxygen levels in plants.
Collapse