1
|
Tierling S, Jürgens-Wemheuer WM, Leismann A, Becker-Kettern J, Scherer M, Wrede A, Breuskin D, Urbschat S, Sippl C, Oertel J, Schulz-Schaeffer WJ, Walter J. Bisulfite profiling of the MGMT promoter and comparison with routine testing in glioblastoma diagnostics. Clin Epigenetics 2022; 14:26. [PMID: 35180887 PMCID: PMC8857788 DOI: 10.1186/s13148-022-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. Results To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350–1354, 2000. 10.1056/NEJM200011093431901) and Felsberg et al. (Clin Cancer Res 15(21):6683–6693, 2009. 10.1158/1078-0432.CCR-08-2801) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. Conclusion Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01244-4.
Collapse
Affiliation(s)
- Sascha Tierling
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.
| | | | - Alea Leismann
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| | - Julia Becker-Kettern
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - Michael Scherer
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.,Department of Bioinformatics and Genomics, Centre for Genomic Regulation, Barcelona, Spain
| | - Arne Wrede
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - David Breuskin
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Steffi Urbschat
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Christoph Sippl
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Joachim Oertel
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | | | - Jörn Walter
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| |
Collapse
|
2
|
Zakir U, Siddiqui NN, Naqvi FUH, Khan R. Aberrant STAT1 methylation as a non-invasive biomarker in blood of HCV induced hepatocellular carcinoma. Cancer Biomark 2021; 34:95-103. [PMID: 34657877 DOI: 10.3233/cbm-210216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common types of cancer in the world and a reason behind different oncogenes activation and tumor suppressor genes inactivation. Hyper-methylation of tumor suppressor genes including RASSF1a, GSTP1, p16, and APC cause gene silencing as well as tumor cell invasion. STAT 1 gene is a part of signaling cascade of JAK/STAT and any dysregulation in signaling has been implicated in tumor formation. OBJECTIVE The current investigation focus on the methylation role of STAT1 gene as a non-invasive biomarker in the progression and diagnosis of hepatocellular carcinoma. METHODS STAT1 gene methylation status in 46 HCV induced hepatocellular carcinoma patients and 40 non-HCC controls were examined by methylation specific PCR. STAT1 gene expression was examined by real time PCR and further validated by various bioinformatics tools. RESULTS STAT1 methylation in HCV-induced HCC (67.4%) was significantly higher compared to the non-HCC controls (p< 0.01). However, mRNA expression of STAT1 gene in methylated groups was significantly lower compared to unmethylated groups (p< 0.05). Furthermore, insilco analysis of STAT1 validated our results and shown expression of STAT1 mRNA was lower in liver cancer with the median 24.3 (p= 0.085). CONCLUSION After using peripheral blood samples we observed that STAT1 silencing caused by aberrant methylation could be used as potential non-invasive biomarker for the diagnosis of HCV induced hepatocellular carcinoma. We conclude that blood as a sample source could be used instead of biopsy for early detection of HCC.
Collapse
Affiliation(s)
- Umaira Zakir
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Nadir Naveed Siddiqui
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | | | - Rizma Khan
- Department of Molecular Genetics, Dr. Ziauddin Hospital, Karachi, Pakistan
| |
Collapse
|
3
|
Raut JR, Guan Z, Schrotz-King P, Brenner H. Fecal DNA methylation markers for detecting stages of colorectal cancer and its precursors: a systematic review. Clin Epigenetics 2020; 12:122. [PMID: 32778176 PMCID: PMC7418412 DOI: 10.1186/s13148-020-00904-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background DNA methylation biomarkers in stool may have applications in early colorectal cancer (CRC) detection; however, their association with stages of CRC carcinogenesis or their performance in detecting various stages is unclear. We aimed to systematically review the evidence for DNA methylation markers in stool for risk stratification or detection of specific CRC stages, as well as precursors of CRC. Methods We conducted a systematic search in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched PubMed and ISI Web of Knowledge to identify relevant studies published until 14th January 2020. Two reviewers independently extracted data on study population characteristics, candidate genes, methylation measurement methods, odds ratios (ORs), overall and stage-specific sensitivities, specificities, areas under the receiver operating characteristics curve, and p-values for statistical significance for OR and for association of methylation levels with stage. Results Twenty-seven studies that reported stage-specific associations or performances of fecal DNA methylation markers for detecting colorectal neoplasms were identified. All studies used methylation-specific polymerase chain reaction for assessing methylation levels in the promoter or exon 1 regions of targeted genes. However, most studies were underpowered and limited by their case-control design. Furthermore, the stage-specific associations or sensitivities were validated for two markers (hypermethylation of GATA4 and VIM) only. Conclusion Methylation markers in stool may be useful for detection of CRC precursors or CRC staging, but promising candidate markers need to be validated in longitudinal studies on large screening populations, performing epigenome-wide analyses. Identification of stage-specific DNA methylation biomarkers in stool could boost current strategies towards early detection and enable different approaches to precision medicine for CRC.
Collapse
Affiliation(s)
- Janhavi R Raut
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Zhong Guan
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Schrotz-King
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hermann Brenner
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. .,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Han Q, Zhou H, Xie W, Sun T, Wei R, Nie C, Hong J, Zhu L, Tian W. Association between the methylation of the STAT1 and SOCS3 in peripheral blood and gastric cancer. J Gastroenterol Hepatol 2020; 35:1347-1354. [PMID: 32108380 DOI: 10.1111/jgh.15021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/19/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM DNA methylation is an important epigenetic modification that can promote the development of various cancers. The STAT1 and SOCS3 have been observed to be hypermethylated in tumor tissues and peripheral blood. This study aimed to explore the relationship between the methylation status of the STAT1 and SOCS3 in peripheral blood and gastric cancer (GC). METHODS This hospital-based case-control study involved 372 patients with GC and 379 controls. The methylation status of the STAT1 and SOCS3 was semiquantitatively determined using the methylation-sensitive high-resolution melting method. Logistic regression analysis was used to analyze the relationship between the STAT1 and SOCS3 methylation status and GC susceptibility. Moreover, propensity scores were used to control confounding factors. RESULTS Compared with negative methylation, the positive methylation of SOCS3 significantly increased the risk of GC (ORa = 1.820, 95% CI: 1.247-2.658, P = 0.002). This trend was also found via stratified analysis, and methylation positivity of the SOCS3 significantly increased the risk of GC in the < 60 years group, in the ≥ 60 years group, and in the positive Helicobacter pylori infection group (ORa = 1.654, 95% CI: 1.029-2.660, P = 0.038; ORa = 1.957, 95% CI: 1.136-3.376, P = 0.016; ORa = 2.084, 95% CI: 1.270-3.422, P = 0.004, respectively). Additionally, no significant association was found between STAT1 methylation and GC risk (ORa = 0.646, 95% CI: 0.363-1.147, P = 0.135). This study found that the interaction between the methylation status of STAT1 and SOCS3 and environmental factors did not have an impact on GC risk. CONCLUSION SOCS3 methylation may serve as a new potential biomarker for GC susceptibility.
Collapse
Affiliation(s)
- Qian Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Wenzhen Xie
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Tong Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Rongrong Wei
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Chuang Nie
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Jia Hong
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Lin Zhu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Tsui KH, Lee WL, Seow KM, Yang LW, Wang SY, Wang PH, Chang CL, Yen MS, Cheng JT, Chen CP. Effect of gonadotropin-releasing hormone agonist on ES-2 ovarian cancer cells. Taiwan J Obstet Gynecol 2014; 53:35-42. [PMID: 24767644 DOI: 10.1016/j.tjog.2013.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2013] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Gonadotropin-releasing hormone (GnRH) receptor is found in the ovarian tissue, including epithelial ovarian cancer (EOC), suggesting that GnRH agonists may have direct action on EOC. MATERIALS AND METHODS Ovarian clear cell cancer (ES-2) cells were treated with low-dose GnRH agonist with/without low-dose paclitaxel (1 μM D-Lys(6) with/without 0.5 μM or 1.0 μM paclitaxel). Growth and behavior of ES-2 cells were evaluated. RESULTS Use of either D-Lys(6) or paclitaxel or a combination of the two did not affect the morphology and growth pattern of ES-2 cells. However, ability of migration and invasion of ES-2 cells was significantly decreased in either use of D-Lys(6) or paclitaxel and more apparent with the combination. Type I GnRH receptor expression of ES-2 was not altered significantly by the combination. CONCLUSION GnRH agonist might modify the ES-2 ovarian cancer cells, and its role might be independent, additional or synergistic, suggesting the potential role of the use of GnRH agonist in the management of clear cell type of the ovarian cancer. However, the results of this study were derived using ES-2 ovarian cancer cells, and might not be valid in other cell types of ovarian cancers.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Wen-Ling Lee
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan; Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Kok-Min Seow
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, Shih Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Lin-Wei Yang
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Yi Wang
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Chi-Lun Chang
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Shyen Yen
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ping Chen
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|