1
|
Xue J, Zhou Z, Zhu Z, Sun Q, Zhu Y, Wu P. A high salt diet impairs the bladder epithelial barrier and activates the NLRP3 and NF‑κB signaling pathways to induce an overactive bladder in vivo. Exp Ther Med 2024; 28:362. [PMID: 39071900 PMCID: PMC11273259 DOI: 10.3892/etm.2024.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024] Open
Abstract
Overactive bladder (OAB) is a condition characterized by an urgency to urinate, which is associated with the urodynamic observation of detrusor overexcitation. Although the etiology of OAB is currently unclear, it has been suggested that in patients with OAB, disruption of bladder epithelial barrier integrity can disturb the normal contractile function of the detrusor. Additionally, dietary preferences have been suggested to influence the severity of OAB. Therefore, the aim of the present study was to investigate the effect of a high salt diet (HSD) on the development of OAB in a murine model. Mice were fed either a HSD or standard diet for 8 weeks, following which voiding characteristics and bladder barrier function were assessed. The present study demonstrated that a HSD in mice was associated with OAB-like symptoms such as increased urinary frequency and non-voiding bladder contractions. The HSD group demonstrated a thinner bladder mucus layer and decreased expression of bladder barrier markers, tight junction protein-1 and claudin-1, which may be potentially indicative of induced bladder damage. A HSD for 8 weeks in mice and a high salt treatment at the uroepithelium cellular (SV-HUC-1s) level resulted in increased uroepithelial oxidative stress and inflammatory cell infiltration, as indicated by increased expression levels of TNF-α and IL-1β, as well as activation of the nucleotide-binding domain leucine-rich-containing family pyrin domain-containing 3 (NLRP3) and NF-κB signaling pathways in vivo and in vitro. Therefore, the present study indicated that a HSD could be a potentially important risk factor for the development of OAB, as it may be associated with overactivation of contractile function of the bladder by impairing the integrity of the bladder epithelial barrier and activation of the NLRP3 and NF-κB signaling pathways. Remodeling of the bladder barrier and reduction of the inflammatory response may be potential targets for the treatment of OAB in the future.
Collapse
Affiliation(s)
- Jingwen Xue
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhipeng Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Urology, Jinshan Branch of Fujian Provincial Hospital, Fuzhou, Fujian 350004, P.R. China
| | - Zhangrui Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Sun
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuexuan Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
2
|
Luo H, Zhou H, Chen Y, Sun X, Li Y, Li G, Long S, Wang S, Liang G, Chen S. Hypoxia impairs urothelial barrier function by inhibiting the expression of tight junction proteins in SV-HUC-1 cells. J Cell Mol Med 2024; 28:e18545. [PMID: 39031471 PMCID: PMC11258885 DOI: 10.1111/jcmm.18545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024] Open
Abstract
Hypoxia plays an important role in the pathological process of bladder outlet obstruction. Previous research has mostly focused on the dysfunction of bladder smooth muscle cells, which are directly related to bladder contraction. This study delves into the barrier function changes of the urothelial cells under exposure to hypoxia. Results indicated that after a 5-day culture, SV-HUC-1 formed a monolayer and/or bilayer of cell sheets, with tight junction formation, but no asymmetrical unit membrane was observed. qPCR and western blotting revealed the expression of TJ-associated proteins (occludin, claudin1 and ZO-1) was significantly decreased in the hypoxia group in a time-dependent manner. No expression changes were observed in uroplakins. When compared to normoxic groups, immunofluorescent staining revealed a reduction in the expression of TJ-associated proteins in the hypoxia group. Transepithelial electrical resistance (TEER) revealed a statistically significant decrease in resistance in the hypoxia group. Fluorescein isothiocyanate-conjugated dextran assay was inversely proportional to the results of TEER. Taken together, hypoxia down-regulates the expression of TJ-associated proteins and breaks tight junctions, thus impairing the barrier function in human urothelial cells.
Collapse
Affiliation(s)
- Huijiu Luo
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Hui Zhou
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yuzhu Chen
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xianwu Sun
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yihuan Li
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Guangjie Li
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shouyi Long
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shiyu Wang
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Guobiao Liang
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shulian Chen
- Department of UrologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
3
|
Gao X, Jin X, Wang W, Di X, Peng L, Li H, Liao B, Wang K. β-Adrenoceptors regulate urothelial inflammation and zonula occludens in the bladder outlet obstruction model. Int Immunopharmacol 2024; 127:111371. [PMID: 38103410 DOI: 10.1016/j.intimp.2023.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the effects of β-adrenoceptors (ADRBs) on the urothelial inflammation and zonula occludens (ZO) in a rat PBOO model and in an in vitro model. METHODS The PBOO model was established by ligating the bladder neck of rats. Twenty rats were divided into 4 groups: sham operation, PBOO + normal saline, PBOO + ADRB2 agonist, PBOO + ADRB3 agonist. PBOO rats were with treated with ADRBs agonists for 3 weeks. Human urothelial cells (HUCs) were subjected to ADRBs agonist treatment or hydrostatic pressure in an in vitro model. RESULTS In the PBOO group, there was a significant increase in the expression of MCP-1, IL-6 and RANTES compared to the sham group. By contrast, there was a post-PBOO decline in the expression of ZO-1 and ZO-2 in the urothelium. ADRB2 or ADRB3 agonists exhibited downregulated inflammatory cytokine expression and increased ZO expression in the PBOO model. The regulation of inflammation and ZO by ADRB2 and ADRB3 agonists in an in vitro model was found consistent with that in the PBOO model. Moreover, RhoA and ROCK inhibitors suppressed the expression of hydrostatic pressure-induced inflammatory cytokines. Additionally, RhoA agonist reversed the inhibitory effect of ADRBs agonists on the inflammatory secretion from HUCs. CONCLUSIONS ADRB2 and ADRB3 agonists increased ZO protein expression in HUCs in a rat PBOO model and in an in vitro model. Furthermore, ADRB2 and ADRB3 agonists inhibited the secretion of inflammatory cytokines from HUCs by regulating the RhoA/ROCK signaling pathways.
Collapse
Affiliation(s)
- Xiaoshuai Gao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xi Jin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Wei Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xingpeng Di
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Liao Peng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Banghua Liao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Zheng X, Ren B, Gao Y. Tight junction proteins related to blood-brain barrier and their regulatory signaling pathways in ischemic stroke. Biomed Pharmacother 2023; 165:115272. [PMID: 37544283 DOI: 10.1016/j.biopha.2023.115272] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Tight junctions (TJs) are crucial for intercellular connections. The abnormal expression of proteins related to TJs can result in TJ destruction, structural damage, and endothelial and epithelial cell dysfunction. These factors are associated with the occurrence and progression of several diseases. Studies have shown that blood-brain barrier (BBB) damage and dysfunction are the prominent pathological features of stroke. TJs are directly associated with the BBB integrity. In this article, we first discuss the structure and function of BBB TJ-related proteins before focusing on the crucial events that cause TJ dysfunction and BBB damage, as well as the regulatory mechanisms that affect the qualitative and quantitative expression of TJ proteins during ischemic stroke. Multiple regulatory mechanisms, including phosphorylation, matrix metalloproteinases (MMPs), and microRNAs, regulate TJ-related proteins and affect BBB permeability. Some signaling pathways and mechanisms have been demonstrated to have dual functions. Hopefully, our understanding of the regulation of BBB TJs in ischemic stroke will be applied to the development of targeted medications and therapeutic therapies.
Collapse
Affiliation(s)
- Xiangyi Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Beida Ren
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Lien W, Zhou X, Liang Y, Ching CT, Wang C, Lu F, Chang H, Lin F, Wang HD. Therapeutic potential of nanoceria pretreatment in preventing the development of urological chronic pelvic pain syndrome: Immunomodulation via reactive oxygen species scavenging and SerpinB2 downregulation. Bioeng Transl Med 2023; 8:e10346. [PMID: 36684074 PMCID: PMC9842028 DOI: 10.1002/btm2.10346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
Urological chronic pelvic pain syndrome (UCPPS) manifests as pelvic pain with frequent urination and has a 10% prevalence rate without effective therapy. Nanoceria (cerium oxide nanoparticles [CNPs]) were synthesized in this study to achieve potential long-term pain relief, using a commonly used UCPPS mouse model with cyclophosphamide-induced cystitis. Transcriptome sequencing analysis revealed that serpin family B member 2 (SerpinB2) was the most upregulated marker in mouse bladder, and SerpinB2 was downregulated with CNP pretreatment. The transcriptome sequencing analysis results agreed with quantitative polymerase chain reaction and western blot analysis results for the expression of related mRNAs and proteins. Analysis of Gene Expression Omnibus (GEO) datasets revealed that SerpinB2 was a differentially upregulated gene in human UCPPS. In vitro SerpinB2 knockdown downregulated proinflammatory chemokine expression (chemokine receptor CXCR3 and C-X-C motif chemokine ligand 10) upon treatment with 4-hydroperoxycyclophosphamide. In conclusion, CNP pretreatment may prevent the development of UCPPS, and reactive oxygen species (ROS) scavenging and SerpinB2 downregulation may modulate the immune response in UCPPS.
Collapse
Affiliation(s)
- Wei‐Chih Lien
- Department of Physical Medicine and RehabilitationNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan, Republic of China
- Department of Physical Medicine and Rehabilitation, College of MedicineNational Cheng Kung UniversityTainanTaiwan, Republic of China
- Ph.D. Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
| | - Xin‐Ran Zhou
- Institute of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China
| | - Ya‐Jyun Liang
- Institute of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China
| | - Congo Tak‐Shing Ching
- Ph.D. Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
- Graduate Institute of Biomedical EngineeringNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
| | - Chia‐Yih Wang
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan, Republic of China
- Institute of Basic Medical Sciences, College of MedicineNational Cheng Kung UniversityTainanTaiwan, Republic of China
| | - Fu‐I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan, Republic of China
- The iEGG and Animal Biotechnology CenterNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
| | - Huei‐Cih Chang
- Department of Physical Medicine and Rehabilitation, College of MedicineNational Cheng Kung UniversityTainanTaiwan, Republic of China
| | - Feng‐Huei Lin
- Ph.D. Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
- Institute of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesZhunan, MiaoliTaiwan, Republic of China
| | - Hui‐Min David Wang
- Ph.D. Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
- Graduate Institute of Biomedical EngineeringNational Chung Hsing UniversityTaichung CityTaiwan, Republic of China
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan, Republic of China
- Department of Medical Laboratory Science and BiotechnologyChina Medical UniversityTaichung CityTaiwan, Republic of China
| |
Collapse
|
6
|
Shen JD, Chen SJ, Chen HY, Chiu KY, Chen YH, Chen WC. Review of Animal Models to Study Urinary Bladder Function. BIOLOGY 2021; 10:biology10121316. [PMID: 34943231 PMCID: PMC8698391 DOI: 10.3390/biology10121316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary The treatment of urinary bladder dysfunction requires the knowledge of bladder function, which involves physiology, pathology, and even psychology. Several animal models are available to study a variety of bladder disorders. These models include animals from rodents, such as mice and rats, to nonhuman primates, such as rabbits, felines, canines, pigs, and mini pigs. This review adapted animal models to study bladder function according to facility, priority, and disease. Abstract The urinary bladder (UB) serves as a storage and elimination organ for urine. UB dysfunction can cause multiple symptoms of failure to store urine or empty the bladder, e.g., incontinence, frequent urination, and urinary retention. Treatment of these symptoms requires knowledge on bladder function, which involves physiology, pathology, and even psychology. There is no ideal animal model for the study of UB function to understand and treat associated disorders, as the complexity in humans differs from that of other species. However, several animal models are available to study a variety of other bladder disorders. Such models include animals from rodents to nonhuman primates, such as mice, rats, rabbits, felines, canines, pigs, and mini pigs. For incontinence, vaginal distention might mimic birth trauma and can be measured based on leak point pressure. Using peripheral and central models, inflammation, bladder outlet obstruction, and genetic models facilitated the study of overactive bladder. However, the larger the animal model, the more difficult the study is, due to the associated animal ethics issues, laboratory facility, and budget. This review aims at facilitating adapted animal models to study bladder function according to facility, priority, and disease.
Collapse
Affiliation(s)
- Jing-Dung Shen
- Division of Urology, Department of Surgery, Taichung Armed Forces General Hospital, Taichung 41168, Taiwan;
- National Defense Medical Center, Taipei 11490, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Szu-Ju Chen
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (S.-J.C.); (K.-Y.C.)
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Obstetrics and Gynecology, Department of Medical Research, Department of Urology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (S.-J.C.); (K.-Y.C.)
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Obstetrics and Gynecology, Department of Medical Research, Department of Urology, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: (Y.-H.C.); (W.-C.C.)
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Obstetrics and Gynecology, Department of Medical Research, Department of Urology, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (Y.-H.C.); (W.-C.C.)
| |
Collapse
|