1
|
Sharifian-Dorche M, La Piana R. General approach to treatment of genetic leukoencephalopathies in children and adults. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:335-354. [PMID: 39322388 DOI: 10.1016/b978-0-323-99209-1.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Despite the enormous advancements seen in recent years, curative therapies for patients with genetic leukoencephalopathies are available for only a relatively small number of disorders. Therefore, symptomatic treatment and preventive management of the multiple clinical manifestations of patients with genetic leukoencephalopathies are critical in their care. The goals of the symptomatic treatment are to improve patients' quality of life, increase their survival, and reduce the impact on medical resources and related expenses. The coordinated work of a multidisciplinary team, including all specialists involved in the care of these patients, is the gold standard approach to manage and treat their complex and evolving clinical picture. Along with a multidisciplinary team, the relationship and close collaboration with the patient and their caregivers are essential. Their insight into the disease manifestations and management of the different issues should be integrated with the assessments of the multidisciplinary team to prevent clinical complications and preserve the quality of life of patients and their caregivers. Genetic leukoencephalopathies are very heterogeneous in terms of age of onset, clinical features, and disease course. However, many clinical features and problems are shared by most forms. Consequently, common therapeutic strategies apply to the majority of these diseases. This chapter presents the symptomatic approach for shared core clinical features presented by patients with genetic leukoencephalopathies divided by systems and, for each system, the specificities of some genetic leukoencephalopathies.
Collapse
Affiliation(s)
- Maryam Sharifian-Dorche
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Roberta La Piana
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Sarwar S, Shabana, Sajjad K, Hasnain S. Genetic studies in the Pakistani population reveal novel associations with ventricular septal defects (VSDs). BMC Pediatr 2023; 23:67. [PMID: 36759823 PMCID: PMC9909889 DOI: 10.1186/s12887-023-03851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND With prevalence up to 4%, Ventricular Septal Defect (VSD) is one of the leading causes of neonatal deaths. VSD is a common complex genetic disorder that has been associated with many genetic determinants. Variants from genes for the transcription factors including T-Box TBX5 and NFATc1 (nuclear factor of activated T cells, cytoplasmic 1), Vascular endothelial growth factor (VEGF), ISLET1 (encoded by the ISL1 gene) and enzyme MTHFR, a methylene tetrahydrofolate reductase were selected. Genetic risk score (GRS) is a widely accepted approach used to convert the genetic data into prediction and assessment tool for disease susceptibility. METHODS A total of 200 participants were recruited for the current study, 100 VSD patients and 100 controls. Genotyping of the ISL1: rs1017, NFATc1: rs7240256, VEGF: rs36208048, TBX5: rs11067075, and MTHFR: rs1801133 variants was performed using tetra primer ARMS PCR and PCR-RFLP. For the statistical analysis, the software SPSS version 23 was used. Genotypic frequencies of cases and controls were calculated using chi-square (χ²) whereas allelic frequencies were calculated by using the SNPStats tool. The association of GRS quartiles with VSD was examined using binary logistic regression. Adjusted p-value 0.01 was used as significance threshold for all analyses. RESULTS The ISL1 (OD: 0.242, CI: 0.158-0.37, p-value: 2.15 × 10- 4 :), NFATc1 (OD: 2.53, CI: 1.64-3.89, p-value: 2.11 × 10- 5), TBX5 (OD: 2.24, CI: 1.47-3.41, p-value:1.6 × 10- 4) and MTHFR (OD: 10.46, CI: 5.68-19.26, p-value: 2.09 × 10- 9:) variants were found to be in association with VSD. In contrast, the VEGF (OD: 0.952, CI: 0.56-1.62, p-value: 0.8921) variant did not show significance association with the VSD. For cases, the mean GRS score was 3.78 ± 1.285 while in controls it was 2.95 ± 1.290 (p-value: 0.479, CI: 0.474-1.190). Comparison of GRS between cases and control showed that mean GRS of cases was 1.90 ± 0.480 while in controls it was 1.68 ± 0.490 (p-value: 0.001, CI: 0.086-0.354). Higher quartiles were more prevalent in cases whereas lower quartiles were more prevalent in controls. CONCLUSION GRS of these five loci was strongly associated with VSD. Moreover, genetic risk score can provide better information for the association between variants and disease as compared to a single SNP. We also illustrated that the cumulative power of GRS is greater over the single SNP effect. This is a pilot scale study with a relatively small sample size whose findings should be replicated in a larger sample size for the unique local Pakistani population.
Collapse
Affiliation(s)
- Sumbal Sarwar
- Institute of Microbiology and Molecular Genetics, University of the Punjab, 54590, Lahore, Pakistan.
| | - Shabana
- Institute of Microbiology and Molecular Genetics, University of the Punjab, 54590, Lahore, Pakistan.
| | - Khadija Sajjad
- grid.11173.350000 0001 0670 519XInstitute of Microbiology and Molecular Genetics, University of the Punjab, 54590 Lahore, Pakistan
| | - Shahida Hasnain
- grid.11173.350000 0001 0670 519XInstitute of Microbiology and Molecular Genetics, University of the Punjab, 54590 Lahore, Pakistan
| |
Collapse
|
3
|
Bai X, Zheng L, Ma S, Kan X. Prenatal diagnosis of chromosome 18 long arm deletion syndrome by high-throughput sequencing: Two case reports. Medicine (Baltimore) 2021; 100:e28143. [PMID: 34918667 PMCID: PMC8677896 DOI: 10.1097/md.0000000000028143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Chromosome 18 long arm deletion syndrome is a group of clinical syndromes caused by partial or total genetic material deletion of the long arm of chromosome 18 (18q), whose clinical manifestations are related to presentation and developmental abnormalities in various aspects such as intelligence, face, and movement. Prenatal diagnosis of this syndrome is challenging because of its low incidence and uncharacteristic prenatal clinical performance. In this paper, 2 cases of partial deletion of 18q found in prenatal amniotic fluid examination by high-throughput sequencing were reported and analyzed. PATIENT CONCERNS In patient 1, non-invasive prenatal gene detection at 21 + 2 weeks of gestation suggests a risk of trisomy 18. In patient 2, ultrasound examination at 21 + 2 weeks of gestation revealed a single live fetus, but it was difficult to pinpoint whether the fetus had only 1 umbilical artery to supply blood. DIAGNOSIS AND INTERVENTION The 18q deletion syndrome was diagnosed by chromosome karyotype analysis and high-throughput sequencing. OUTCOMES The pregnancies were terminated due to the abnormal chromosome. LESSON This report adds novel variants to the genetic profile of 18q deletion, in order to enrich the genetic data of long arm deletion of 18 chromosomes and provide better services for pre-screening, diagnosis, and genetic counseling for this disease.
Collapse
|
4
|
Chen CP, Lin HY, Wang LK, Chern SR, Wu PS, Chen SW, Wu FT, Fran S, Chen YY, Town DD, Pan CW, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of a small supernumerary marker chromosome derived from inv dup(15). Taiwan J Obstet Gynecol 2021; 59:580-585. [PMID: 32653133 DOI: 10.1016/j.tjog.2020.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of an inverted duplication of proximal chromosome 15 [inv dup(15)] presenting as a small supernumerary marker chromosome (sSMC) at amniocentesis associated with concomitant microduplication of 8q22.1. MATERIALS AND METHODS A 39-year-old woman underwent amniocentesis at 16 weeks of gestation because of advanced maternal age, and the result was 47, XY, +mar dn. The woman requested for repeat amniocentesis at 20 weeks of gestation. Array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH), quantitative fluorescent polymerase chain reaction (QF-PCR) and DNA methylation analysis were applied to determine the nature of the sSMC. RESULTS aCGH on the uncultured amniocytes revealed the result of arr 8q22.1 (93,918,763-96,618,539) × 3.0, arr 15q11.2q13.2 (22,765,628-30,658,876) × 4.0, arr 15q13.2q13.3 (30,653,877-32,509,926) × 3.0 [GRCh37 (hg19)]. Interphase FISH analysis using RP11-34H12 [15q13.2; Texas Red, 30,709,033-30,893,021 (hg19)] on 100 uncultured amniocytes showed that 38 cells had three signals, 45 cells had four signals and 27 cells had two signals. The parental bloods had normal aCGH results. The karyotype of cultured amniocytes was 47, XY, +inv dup(15) (pter→q13::q13→pter) which was confirmed by metaphase FISH analysis. No informative markers could be found in QF-PCR analysis. DNA methylation analysis on cord blood confirmed a maternal origin of the 15q11-q13 gene dosage increase with a result of 15q11.2 SNRPN DNA hypermethylation. Postnatal cytogenetic analysis on cord blood, umbilical cord and placenta showed the results consistent with the prenatal diagnosis. CONCLUSION Molecular cytogenetic techniques are useful for rapid diagnosis of an inv dup(15) chromosome presenting as an sSMC at amniocentesis.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Hsiang-Yu Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Liang-Kai Wang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Sisca Fran
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Yi Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Dai-Dyi Town
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Wen Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
5
|
Zhang S, Zhang X, Purmann C, Ma S, Shrestha A, Davis KN, Ho M, Huang Y, Pattni R, Hung Wong W, Bernstein JA, Hallmayer J, Urban AE. Network Effects of the 15q13.3 Microdeletion on the Transcriptome and Epigenome in Human-Induced Neurons. Biol Psychiatry 2021; 89:497-509. [PMID: 32919612 PMCID: PMC9359316 DOI: 10.1016/j.biopsych.2020.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The 15q13.3 microdeletion is associated with several neuropsychiatric disorders, including autism and schizophrenia. Previous association and functional studies have investigated the potential role of several genes within the deletion in neuronal dysfunction, but the molecular effects of the deletion as a whole remain largely unknown. METHODS Induced pluripotent stem cells, from 3 patients with the 15q13.3 microdeletion and 3 control subjects, were generated and converted into induced neurons. We analyzed the effects of the 15q13.3 microdeletion on genome-wide gene expression, DNA methylation, chromatin accessibility, and sensitivity to cisplatin-induced DNA damage. Furthermore, we measured gene expression changes in induced neurons with CRISPR (clustered regularly interspaced short palindromic repeats) knockouts of individual 15q13.3 microdeletion genes. RESULTS In both induced pluripotent stem cells and induced neurons, gene copy number change within the 15q13.3 microdeletion was accompanied by significantly decreased gene expression and no compensatory changes in DNA methylation or chromatin accessibility, supporting the model that haploinsufficiency of genes within the deleted region drives the disorder. Furthermore, we observed global effects of the microdeletion on the transcriptome and epigenome, with disruptions in several neuropsychiatric disorder-associated pathways and gene families, including Wnt signaling, ribosome function, DNA binding, and clustered protocadherins. Individual gene knockouts mirrored many of the observed changes in an overlapping fashion between knockouts. CONCLUSIONS Our multiomics analysis of the 15q13.3 microdeletion revealed downstream effects in pathways previously associated with neuropsychiatric disorders and indications of interactions between genes within the deletion. This molecular systems analysis can be applied to other chromosomal aberrations to further our etiological understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Siming Zhang
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Shining Ma
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Anima Shrestha
- School of Medicine, Stanford University, and Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Kasey N Davis
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Wing Hung Wong
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Jonathan A Bernstein
- Department of Human Biology, School of Humanities and Science, Stanford University, Stanford, California
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Alexander E Urban
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California; Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California.
| |
Collapse
|
6
|
Identification and analysis of KLF13 variants in patients with congenital heart disease. BMC MEDICAL GENETICS 2020; 21:78. [PMID: 32293321 PMCID: PMC7160950 DOI: 10.1186/s12881-020-01009-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/24/2020] [Indexed: 12/30/2022]
Abstract
Background The protein Kruppel-like factor 13 (KLF13) is a member of the KLF family and has been identified as a cardiac transcription factor that is involved in heart development. However, the relationship between KLF13 variants and CHDs in humans remains largely unknown. The present study aimed to screen the KLF13 variants in CHD patients and genetically analyze the functions of these variants. Methods KLF13 variants were sequenced in a cohort of 309 CHD patients and population-matched healthy controls (n = 200) using targeted sequencing. To investigate the effect of variants on the functional properties of the KLF13 protein, the expression and subcellular localization of the protein, as well as the transcriptional activities of downstream genes and physical interactions with other transcription factors, were assessed. Results Two heterozygous variants, c.487C > T (P163S) and c.467G > A (S156N), were identified in two out of 309 CHD patients with tricuspid valve atresia and transposition of the great arteries, respectively. No variants were found among healthy controls. The variant c.467G > A (S156N) had increased protein expression and enhanced functionality compared with the wild type, without affecting the subcellular localization. The other variant, c.487C > T (P163S), did not show any abnormalities in protein expression or subcellular localization; however, it inhibited the transcriptional activities of downstream target genes and physically interacted with TBX5, another cardiac transcription factor. Conclusion Our results show that the S156N and P163S variants may affect the transcriptional function of KLF13 and physical interaction with TBX5. These results identified KLF13 as a potential genetic risk factor for congenital heart disease.
Collapse
|