1
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
2
|
Bîcă O, Ciongradi CI, Benchia D, Sârbu I, Alecsa M, Cristofor AE, Bîcă DE, Lozneanu L. Assessment of Molecular Markers in Pediatric Ovarian Tumors: Romanian Single-Center Experience. Int J Mol Sci 2024; 25:6752. [PMID: 38928458 PMCID: PMC11204196 DOI: 10.3390/ijms25126752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Pediatric ovarian tumors exhibit unique diagnostic and therapeutic challenges. This study evaluates the expression of SALL4 and OCT3/4 biomarkers in pediatric ovarian tumors and their associations with tumor subtype, stage, and clinical outcome. A retrospective analysis was conducted on 64 patients under 18 years old, examining demographic data, tumor characteristics, immunohistochemical staining, and clinical outcomes. Our results show that SALL4 was significantly expressed in adenocarcinoma, dysgerminoma (DSG), mixed germ cell tumors (GCTs), and immature teratoma, while OCT3/4 was highly expressed in DSG and mixed GCTs. Both markers are associated with a higher tumor grade and stage, indicating a more aggressive disease. The SALL4 positivity expression was correlated with high alpha fetoprotein (AFP) and lactate dehydrogenase (LDH) levels, while OCT3/4 positivity significantly predicted the risk of subsequent metastasis. The mean progression-free survival (PFS) was notably shorter in patients with positive markers. These findings underscore the diagnostic and prognostic value of SALL4 and OCT3/4 in pediatric ovarian tumors, aligning with previous research and supporting their use in clinical practice for better disease management and patient outcomes.
Collapse
Affiliation(s)
- Ovidiu Bîcă
- 2nd Department of Surgery—Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery—Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Diana Benchia
- 2nd Department of Surgery—Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ioan Sârbu
- 2nd Department of Surgery—Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Mirabela Alecsa
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandra Elena Cristofor
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Delia Elena Bîcă
- Department of Clinical Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
3
|
Ji J, Cheng X, Du R, Xie Y, Zhang Y. Advances in research on autophagy mechanisms in resistance to endometrial cancer treatment. Front Oncol 2024; 14:1364070. [PMID: 38601753 PMCID: PMC11004244 DOI: 10.3389/fonc.2024.1364070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Administering medication is a crucial strategy in improving the prognosis for advanced endometrial cancer. However, the rise of drug resistance often leads to the resurgence of cancer or less-than-ideal treatment outcomes. Prior studies have shown that autophagy plays a dual role in the development and progression of endometrial cancer, closely associated with drug resistance. As a result, concentrating on autophagy and its combination with medical treatments might be a novel approach to improve the prognosis for endometrial cancer. This study explores the impact of autophagy on drug resistance in endometrial cancer, investigates its core mechanisms, and scrutinizes relevant treatments aimed at autophagy, aiming to illuminate the issue of treatment resistance in advanced endometrial cancer.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Rong Du
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yuanyuan Xie
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Yang M, Niu C. KLF9‑regulated FBXO31 inhibits the progression of endometrial cancer and enhances the sensitivity of endometrial cancer cells to cisplatin. Exp Ther Med 2024; 27:54. [PMID: 38234628 PMCID: PMC10790170 DOI: 10.3892/etm.2023.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 01/19/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common malignancies with an increasing annual incidence. F-box only protein 31 (FBXO31) plays a significant regulatory role in several types of cancer. The transcription factor Krüppel-like factor 9 (KLF9) of FBXO31 is reduced in EC as a tumor suppressor. However, their particular regulatory role and mechanism in EC have not been previously reported. Therefore, the UALCAN database was used to predict the expression levels of FBXO31 in EC. In addition, the regulatory effect of FBXO31 on EC cell proliferation, invasion, migration, apoptosis and cisplatin (DDP) sensitivity was investigated at the cellular level. The association between KLF9 and FBXO31 was predicted using the JASPAR database and verified by chromatin immunoprecipitation and luciferase reporter assays. Finally, the regulatory effects of KLF9 and FBXO31 overexpression or silencing were also explored. The results demonstrated that FBXO31 was poorly expressed in EC. Additionally, FBXO31 overexpression inhibited the malignant progression of EC cells and enhanced their sensitivity to DDP. Furthermore, KLF9 promoted FBXO31 transcription. Overall, the present study suggested that the KLF9-mediated regulation of FBXO31 could inhibit the progression of EC and enhance the sensitivity of EC cells to DDP.
Collapse
Affiliation(s)
- Mudan Yang
- Department of Infectious Diseases (Fever Clinic), Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Changmin Niu
- School of Nursing, School of Public Health, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|