1
|
Ono M, Ito T. Hearing loss-related altered neuronal activity in the inferior colliculus. Hear Res 2024; 449:109033. [PMID: 38797036 DOI: 10.1016/j.heares.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Hearing loss is well known to cause plastic changes in the central auditory system and pathological changes such as tinnitus and hyperacusis. Impairment of inner ear functions is the main cause of hearing loss. In aged individuals, not only inner ear dysfunction but also senescence of the central nervous system is the cause of malfunction of the auditory system. In most cases of hearing loss, the activity of the auditory nerve is reduced, but that of the successive auditory centers is increased in a compensatory way. It has been reported that activity changes occur in the inferior colliculus (IC), a critical nexus of the auditory pathway. The IC integrates the inputs from the brainstem and drives the higher auditory centers. Since abnormal activity in the IC is likely to affect auditory perception, it is crucial to elucidate the neuronal mechanism to induce the activity changes of IC neurons with hearing loss. This review outlines recent findings on hearing-loss-induced plastic changes in the IC and brainstem auditory neuronal circuits and discusses what neuronal mechanisms underlie hearing-loss-induced changes in the activity of IC neurons. Considering the different causes of hearing loss, we discuss age-related hearing loss separately from other forms of hearing loss (non-age-related hearing loss). In general, the main plastic change of IC neurons caused by both age-related and non-age-related hearing loss is increased central gain. However, plastic changes in the IC caused by age-related hearing loss seem to be more complex than those caused by non-age-related hearing loss.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Tetsufumi Ito
- Systems Function and Morphology, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Bartlett EL, Han EX, Parthasarathy A. Neurometric amplitude modulation detection in the inferior colliculus of Young and Aged rats. Hear Res 2024; 447:109028. [PMID: 38733711 PMCID: PMC11129790 DOI: 10.1016/j.heares.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Amplitude modulation is an important acoustic cue for sound discrimination, and humans and animals are able to detect small modulation depths behaviorally. In the inferior colliculus (IC), both firing rate and phase-locking may be used to detect amplitude modulation. How neural representations that detect modulation change with age are poorly understood, including the extent to which age-related changes may be attributed to the inherited properties of ascending inputs to IC neurons. Here, simultaneous measures of local field potentials (LFPs) and single-unit responses were made from the inferior colliculus of Young and Aged rats using both noise and tone carriers in response to sinusoidally amplitude-modulated sounds of varying depths. We found that Young units had higher firing rates than Aged for noise carriers, whereas Aged units had higher phase-locking (vector strength), especially for tone carriers. Sustained LFPs were larger in Young animals for modulation frequencies 8-16 Hz and comparable at higher modulation frequencies. Onset LFP amplitudes were much larger in Young animals and were correlated with the evoked firing rates, while LFP onset latencies were shorter in Aged animals. Unit neurometric thresholds by synchrony or firing rate measures did not differ significantly across age and were comparable to behavioral thresholds in previous studies whereas LFP thresholds were lower than behavior.
Collapse
Affiliation(s)
- Edward L Bartlett
- Department of Biological Sciences and the Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Emily X Han
- Department of Biological Sciences and the Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, United States
| | - Aravindakshan Parthasarathy
- Department of Biological Sciences and the Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
3
|
Mellott JG, Duncan S, Busby J, Almassri LS, Wawrzyniak A, Iafrate MC, Ohl AP, Slabinski EA, Beaver AM, Albaba D, Vega B, Mafi AM, Buerke M, Tokar NJ, Young JW. Age-related upregulation of dense core vesicles in the central inferior colliculus. Front Cell Neurosci 2024; 18:1396387. [PMID: 38774486 PMCID: PMC11107844 DOI: 10.3389/fncel.2024.1396387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Presbycusis is one of the most prevalent disabilities in aged populations of industrialized countries. As we age less excitation reaches the central auditory system from the periphery. To compensate, the central auditory system [e.g., the inferior colliculus (IC)], downregulates GABAergic inhibition to maintain homeostatic balance. However, the continued downregulation of GABA in the IC causes a disruption in temporal precision related to presbycusis. Many studies of age-related changes to neurotransmission in the IC have therefore focused on GABAergic systems. However, we have discovered that dense core vesicles (DCVs) are significantly upregulated with age in the IC. DCVs can carry neuropeptides, co-transmitters, neurotrophic factors, and proteins destined for the presynaptic zone to participate in synaptogenesis. We used immuno transmission electron microscopy across four age groups (3-month; 19-month; 24-month; and 28-month) of Fisher Brown Norway rats to examine the ultrastructure of DCVs in the IC. Tissue was stained post-embedding for GABA immunoreactivity. DCVs were characterized by diameter and by the neurochemical profile (GABAergic/non-GABAergic) of their location (bouton, axon, soma, and dendrite). Our data was collected across the dorsolateral to ventromedial axis of the central IC. After quantification, we had three primary findings. First, the age-related increase of DCVs occurred most robustly in non-GABAergic dendrites in the middle and low frequency regions of the central IC during middle age. Second, the likelihood of a bouton having more than one DCV increased with age. Lastly, although there was an age-related loss of terminals throughout the IC, the proportion of terminals that contained at least one DCV did not decline. We interpret this finding to mean that terminals carrying proteins packaged in DCVs are spared with age. Several recent studies have demonstrated a role for neuropeptides in the IC in defining cell types and regulating inhibitory and excitatory neurotransmission. Given the age-related increase of DCVs in the IC, it will be critical that future studies determine whether (1) specific neuropeptides are altered with age in the IC and (2) if these neuropeptides contribute to the loss of inhibition and/or increase of excitability that occurs during presbycusis and tinnitus.
Collapse
Affiliation(s)
- Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Syllissa Duncan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Justine Busby
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Laila S. Almassri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alexa Wawrzyniak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Milena C. Iafrate
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Andrew P. Ohl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Elizabeth A. Slabinski
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Abigail M. Beaver
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Diana Albaba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brenda Vega
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Amir M. Mafi
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Morgan Buerke
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Nick J. Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
4
|
Almassri LS, Ohl AP, Iafrate MC, Wade AD, Tokar NJ, Mafi AM, Beebe NL, Young JW, Mellott JG. Age-related upregulation of perineuronal nets on inferior collicular cells that project to the cochlear nucleus. Front Aging Neurosci 2023; 15:1271008. [PMID: 38053844 PMCID: PMC10694216 DOI: 10.3389/fnagi.2023.1271008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Disruptions to the balance of excitation and inhibition in the inferior colliculus (IC) occur during aging and underlie various aspects of hearing loss. Specifically, the age-related alteration to GABAergic neurotransmission in the IC likely contributes to the poorer temporal precision characteristic of presbycusis. Perineuronal nets (PNs), a specialized form of the extracellular matrix, maintain excitatory/inhibitory synaptic environments and reduce structural plasticity. We sought to determine whether PNs increasingly surround cell populations in the aged IC that comprise excitatory descending projections to the cochlear nucleus. Method We combined Wisteria floribunda agglutinin (WFA) staining for PNs with retrograde tract-tracing in three age groups of Fischer Brown Norway (FBN) rats. Results The data demonstrate that the percentage of IC-CN cells with a PN doubles from ~10% at young age to ~20% at old age. This was true in both lemniscal and non-lemniscal IC. Discussion Furthermore, the increase of PNs occurred on IC cells that make both ipsilateral and contralateral descending projections to the CN. These results indicate that reduced structural plasticity in the elderly IC-CN pathway, affecting excitatory/inhibitory balance and, potentially, may lead to reduced temporal precision associated with presbycusis.
Collapse
Affiliation(s)
- Laila S. Almassri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Andrew P. Ohl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Milena C. Iafrate
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Aidan D. Wade
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Nick J. Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Amir M. Mafi
- The Ohio State College of Medicine, The Ohio State, Columbus, OH, United States
| | - Nichole L. Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|