1
|
Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death Dis 2016; 7:e2194. [PMID: 27077810 PMCID: PMC4855673 DOI: 10.1038/cddis.2016.94] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancers (TNBCs) are aggressive forms of breast carcinoma associated with a high rate of recidivism. In this paper, we report the production of mammospheres from three lines of TNBC cells and demonstrate that both parthenolide (PN) and its soluble analog dimethylaminoparthenolide (DMAPT) suppressed this production and induced cytotoxic effects in breast cancer stem-like cells, derived from dissociation of mammospheres. In particular, the drugs exerted a remarkable inhibitory effect on viability of stem-like cells. Such an effect was suppressed by N-acetylcysteine, suggesting a role of reactive oxygen species (ROS) generation in the cytotoxic effect. Instead z-VAD, a general inhibitor of caspase activity, was ineffective. Analysis of ROS generation, performed using fluorescent probes, showed that both the drugs stimulated in the first hours of treatment a very high production of hydrogen peroxide. This event was, at least in part, a consequence of activation of NADPH oxidases (NOXs), as it was reduced by apocynin and diphenylene iodinium, two inhibitors of NOXs. Moreover, both the drugs caused downregulation of Nrf2 (nuclear factor erythroid 2-related factor 2), which is a critical regulator of the intracellular antioxidant response. Prolonging the treatment with PN or DMAPT we observed between 12 and 24 h that the levels of both superoxide anion and hROS increased in concomitance with the downregulation of manganese superoxide dismutase and catalase. In addition, during this phase dissipation of mitochondrial membrane potential occurred together with necrosis of stem-like cells. Finally, our results suggested that the effect on ROS generation found in the first hours of treatment was, in part, responsible for the cytotoxic events observed in the successive phase. In conclusion, PN and DMAPT markedly inhibited viability of stem-like cells derived from three lines of TNBCs by inducing ROS generation, mitochondrial dysfunction and cell necrosis.
Collapse
|
2
|
Fernández-Moreira V, Alegre-Requena JV, Herrera RP, Marzo I, Gimeno MC. Synthesis of luminescent squaramide monoesters: cytotoxicity and cell imaging studies in HeLa cells. RSC Adv 2016. [DOI: 10.1039/c5ra24521d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Luminescent squaramide monoesters functionalised with fluorophore groups have been explored as cytotoxic and imaging agents. The biodistribution behaviour differs depending on the fluorescent moiety; lysosomal and nuclear localisation have been observed.
Collapse
Affiliation(s)
- Vanesa Fernández-Moreira
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- E-50009 Zaragoza
- Spain
| | - Juan V. Alegre-Requena
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- E-50009 Zaragoza
- Spain
| | - Raquel P. Herrera
- Departamento de Química Orgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- E-50009 Zaragoza
- Spain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología Molecular y Celular
- Universidad de Zaragoza
- E-50009 Zaragoza
- Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- E-50009 Zaragoza
- Spain
| |
Collapse
|
3
|
Soriano J, Villanueva A, Stockert JC, Cañete M. Regulated necrosis in HeLa cells induced by ZnPc photodynamic treatment: a new nuclear morphology. Int J Mol Sci 2014; 15:22772-85. [PMID: 25501332 PMCID: PMC4284736 DOI: 10.3390/ijms151222772] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/03/2014] [Accepted: 12/01/2014] [Indexed: 12/05/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment modality based on the administration of a photosensitizer (PS), which accumulates preferentially in tumor cells. Subsequent irradiation of the neoplastic area triggers a cascade of photochemical reactions that leads to the formation of highly reactive oxygen species responsible for cell inactivation. Photodynamic treatments in vitro are performed with the PS, zinc-phthalocyanine (ZnPc). The PS is near the plasma membrane during uptake and internalization. Inactivation clearly occurs by a necrotic process, manifested by nuclear pyknosis, negative TUNEL and Annexin V assays and non-relocation of cytochrome c. In contrast, by increasing the incubation time, ZnPc is accumulated in the Golgi apparatus and produces cell inactivation with characteristics of apoptosis and necrosis: TUNEL positive, relocated cytochrome c and negative Annexin V assay. This type of death produces a still undescribed granulated nuclear morphology, which is different from that of necrosis or apoptosis. This morphology is inhibited by necrostatin-1, a specific inhibitor of regulated necrosis.
Collapse
Affiliation(s)
- Jorge Soriano
- Department of Biology, University Autonomous of Madrid, 28049 Madrid, Spain.
| | - Angeles Villanueva
- Department of Biology, University Autonomous of Madrid, 28049 Madrid, Spain.
| | | | - Magdalena Cañete
- Department of Biology, University Autonomous of Madrid, 28049 Madrid, Spain.
| |
Collapse
|
4
|
Holme JA, Nyvold HE, Tat V, Arlt VM, Bhargava A, Gutzkow KB, Solhaug A, Låg M, Becher R, Schwarze PE, Ask K, Ekeren L, Øvrevik J. Mechanisms linked to differences in the mutagenic potential of 1,3-dinitropyrene and 1,8-dinitropyrene. Toxicol Rep 2014; 1:459-473. [PMID: 28962260 PMCID: PMC4547165 DOI: 10.1016/j.toxrep.2014.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022] Open
Abstract
This study explores and characterizes the toxicity of two closely related carcinogenic dinitro-pyrenes (DNPs), 1,3-DNP and 1,8-DNP, in human bronchial epithelial BEAS-2B cells and mouse hepatoma Hepa1c1c7 cells. Neither 1,3-DNP nor 1,8-DNP (3–30 μM) induced cell death in BEAS-2B cells. In Hepa1c1c7 cells only 1,3-DNP (10–30 μM) induced a mixture of apoptotic and necrotic cell death after 24 h. Both compounds increased the level of reactive oxygen species (ROS) in BEAS-2B as measured by CM-H2DCFDA-fluorescence. A corresponding increase in oxidative damage to DNA was revealed by the formamidopyrimidine-DNA glycosylase (fpg)-modified comet assay. Without fpg, DNP-induced DNA damage detected by the comet assay was only found in Hepa1c1c7 cells. Only 1,8-DNP formed DNA adduct measured by 32P-postlabelling. In Hepa1c1c cells, 1,8-DNP induced phosphorylation of H2AX (γH2AX) and p53 at a lower concentration than 1,3-DNP and there was no direct correlation between DNA damage/DNA damage response (DR) and induced cytotoxicity. On the other hand, 1,3-DNP-induced apoptosis was inhibited by pifithrin-α, an inhibitor of p53 transcriptional activity. Furthermore, 1,3-DNP triggered an unfolded protein response (UPR), as measured by an increased expression of CHOP, ATF4 and XBP1. Thus, other types of damage possibly linked to endoplasmic reticulum (ER)-stress and/or UPR could be involved in the induced apoptosis. Our results suggest that the stronger carcinogenic potency of 1,8-DNP compared to 1,3-DNP is linked to its higher genotoxic effects. This in combination with its lower potency to induce cell death may increase the probability of causing mutations.
Collapse
Key Words
- 1,3-DNP, 1,3-dinitropyrene
- 1,3-Dinitropyrene
- 1,8-DNP, 1,8-dinitropyrene
- 1,8-Dinitropyrene
- 1-NP, 1-nitropyrene
- 3-NBA, 3-nitrobenzanthrone
- AhR, aromatic hydrocarbon receptor
- Apoptosis
- B[a]P, benzo[a]pyrene
- CM-H2DCFDA or H2DCFDA, 5-(and 6-)chloromethyl-2,7-dichlorodihydrofluorescein diacetate
- CYP, cytochrome P450
- Chk, checkpoint kinases
- DDR, DNA damage response
- DHE, dihydroethidium
- DMSO, dimethyl sulfoxide
- DNA damage
- ER, endoplasmic reticulum
- Hoechst 33258, 2(2-(4-hydroxyphenyl)-6-benzimidazole-6-(1-methyl-4-piperazyl)benzimidazole hydrochloride)
- Hoechst 33342, 2′-(4-ethoxyphenyl)-2′,5′-bis-1H-benzimidazole hydrochloride)
- NR, nitro-reductasesnitro-PAHnitro substituted-polycyclic aromatic hydrocarbon
- Nitro-PAHs
- PAH, polycyclic aromatic hydrocarbon
- PARP, poly(ADP-ribose) polymerase
- PFT, pifithrin
- PI, propidium iodide
- PM, particular matter
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SSB, single strand breaks
- UPR, unfolded protein response
- fpg, formamidopyrimidine-DNA glycosylase
- zVAD-FMK, benzyolcarbonayl-Val-Ala-Asp-fluoromethyl ketone
- γH2AX, phosphorylated H2AX
Collapse
Affiliation(s)
- J A Holme
- Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - H E Nyvold
- Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - V Tat
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - V M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - A Bhargava
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - K B Gutzkow
- Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - A Solhaug
- Norwegian Veterinary Institute, Oslo, Norway
| | - M Låg
- Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - R Becher
- Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - P E Schwarze
- Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - K Ask
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - L Ekeren
- Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - J Øvrevik
- Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| |
Collapse
|
5
|
Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis 2013; 4:e891. [PMID: 24176849 PMCID: PMC3920954 DOI: 10.1038/cddis.2013.415] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancers (TNBCs) are clinically aggressive forms associated with a poor prognosis. We evaluated the cytotoxic effect exerted on triple-negative MDA-MB231 breast cancer cells both by parthenolide and its soluble analogue dimethylamino parthenolide (DMAPT) and explored the underlying molecular mechanism. The drugs induced a dose- and time-dependent decrement in cell viability, which was not prevented by the caspase inhibitor z-VAD-fmk. In particular in the first hours of treatment (1–3 h), parthenolide and DMAPT strongly stimulated reactive oxygen species (ROS) generation. The drugs induced production of superoxide anion by activating NADPH oxidase. ROS generation caused depletion of thiol groups and glutathione, activation of c-Jun N-terminal kinase (JNK) and downregulation of nuclear factor kB (NF-kB). During this first phase, parthenolide and DMAPT also stimulated autophagic process, as suggested by the enhanced expression of beclin-1, the conversion of microtubule-associated protein light chain 3-I (LC3-I) to LC3-II and the increase in the number of cells positive to monodansylcadaverine. Finally, the drugs increased RIP-1 expression. This effect was accompanied by a decrement of pro-caspase 8, while its cleaved form was not detected and the expression of c-FLIPS markedly increased. Prolonging the treatment (5–20 h) ROS generation favoured dissipation of mitochondrial membrane potential and the appearance of necrotic events, as suggested by the increased number of cells positive to propidium iodide staining. The administration of DMAPT in nude mice bearing xenografts of MDA-MB231 cells resulted in a significant inhibition of tumour growth, an increment of animal survival and a marked reduction of the lung area invaded by metastasis. Immunohistochemistry data revealed that treatment with DMAPT reduced the levels of NF-kB, metalloproteinase-2 and -9 and vascular endothelial growth factor, while induced upregulation of phosphorylated JNK. Taken together, our data suggest a possible use of parthenolide for the treatment of TNBCs.
Collapse
|
6
|
Kornienko A, Mathieu V, Rastogi SK, Lefranc F, Kiss R. Therapeutic Agents Triggering Nonapoptotic Cancer Cell Death. J Med Chem 2013; 56:4823-39. [DOI: 10.1021/jm400136m] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University—San Marcos, San Marcos, Texas 78666,
United States
| | - Véronique Mathieu
- Laboratoire
de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, CP205/1,
Boulevard du Triomphe, Brussels, Belgium
| | - Shiva K. Rastogi
- Department of Chemistry and Biochemistry, Texas State University—San Marcos, San Marcos, Texas 78666,
United States
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, ULB, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Robert Kiss
- Laboratoire
de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, CP205/1,
Boulevard du Triomphe, Brussels, Belgium
| |
Collapse
|
7
|
Kolasa E, Balaguer P, Houlbert N, Fardel O. Phorbol ester-modulation of estrogenic genomic effects triggered by the environmental contaminant benzanthracene. Toxicol In Vitro 2012; 26:807-16. [DOI: 10.1016/j.tiv.2012.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/11/2012] [Accepted: 05/18/2012] [Indexed: 12/29/2022]
|
8
|
Huang H, Xiao T, He L, Ji H, Liu XY. Interferon-β-armed oncolytic adenovirus induces both apoptosis and necroptosis in cancer cells. Acta Biochim Biophys Sin (Shanghai) 2012; 44:737-45. [PMID: 22842821 DOI: 10.1093/abbs/gms060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon-β (IFN-β) has been widely used in cancer therapy, but the clinical trial results are generally disappointing. Our previous studies have shown that an oncolytic adenovirus carrying IFN-β (ZD55-IFN-β) exhibits significant anti-tumor activities. However, the underlying mechanisms are not clear. Here we showed that ZD55-IFN-β infection-induced S-phase cell cycle arrest in a p53-dependent manner by activating the ataxia telangiectasia mutated-dependent DNA damage pathway. In addition, ZD55-IFN-β infection could initiate both caspase-dependent apoptosis and necroptosis in cancer cells. More importantly, ZD55-IFN-β showed a synergistic effect on cancer cells when combined with doxorubicin. These results suggest that the combination of ZD55-IFN-β with doxorubicin may represent a promising clinical strategy in cancer therapy.
Collapse
Affiliation(s)
- Hongling Huang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
9
|
Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages. Toxicol Appl Pharmacol 2012; 261:74-87. [PMID: 22483798 DOI: 10.1016/j.taap.2012.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 12/11/2022]
Abstract
The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte-macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1 beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B.
Collapse
|
10
|
Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 2012; 291:65-72. [DOI: 10.1016/j.tox.2011.10.022] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 11/17/2022]
|
11
|
Lee HO, Byun YJ, Cho KO, Kim SY, Lee SB, Kim HS, Kwon OJ, Jeong SW. GS28 Protects Neuronal Cell Death Induced by Hydrogen Peroxide under Glutathione-Depleted Condition. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:149-56. [PMID: 21860593 DOI: 10.4196/kjpp.2011.15.3.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/21/2011] [Accepted: 06/01/2011] [Indexed: 01/28/2023]
Abstract
Golgi SNAP receptor complex 1 (GS28) has been implicated in vesicular transport between intra-Golgi networks and between endoplasmic reticulum (ER) and Golgi. Additional role(s) of GS28 within cells have not been well characterized. We observed decreased expression of GS28 in rat ischemic hippocampus. In this study, we examined the role of GS28 and its molecular mechanisms in neuronal (SK-N-SH) cell death induced by hydrogen peroxide (H(2)O(2)). GS28 siRNA-transfected cells treated with H(2)O(2) showed a significant increase in cytotoxicity under glutathione (GSH)-depleted conditions after pretreatment with buthionine sulfoximine, which corresponded to an increase of intracellular reactive oxygen species (ROS) in the cells. Pretreatment of GS28 siRNA-transfected cells with p38 chemical inhibitor significantly inhibited cytotoxicity; we also observed that p38 was activated in the cells by immunoblot analysis. We confirmed the role of p38 MAPK in cotransfected cells with GS28 siRNA and p38 siRNA in the cell viability assay, flow cytometry, and immunoblot. Involvement of apoptotic or autophagic processes in the cells was not shown in the cell viability, flow cytometry, and immunoblot analyses. However, pretreatment of the cells with necrostatin-1 completely inhibited H(2)O(2)-induced cytotoxicity, ROS generation, and p38 activation, indicating that the cell death is necroptotic. Collectively these data imply that H(2)O(2) induces necroptotic cell death in the GS28 siRNA-transfected cells and that the necroptotic signals are mediated by sequential activations in RIP1/p38/ROS. Taken together, these results indicate that GS28 has a protective role in H(2)O(2)-induced necroptosis via inhibition of p38 MAPK in GSH-depleted neuronal cells.
Collapse
Affiliation(s)
- Hwa Ok Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|