1
|
Wang H, Xiao Y, Huang J, Huang M, Li K. A molecularly imprinted ratiometric fluorescent sensor for visual detection of 1-naphthol based on fluorescence-enhanced CdTeS QDs via APTES modification. Mikrochim Acta 2024; 191:412. [PMID: 38902398 DOI: 10.1007/s00604-024-06467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/25/2024] [Indexed: 06/22/2024]
Abstract
CdTeS quantum dots (CdTeS QDs) were synthesized using the hydrothermal method and subsequently modified with (3-aminopropyl)triethoxysilane (APTES). This modification resulted in a significant enhancement of the fluorescence intensity, which was observed to be five times stronger than that of unmodified CdTeS QDs at 597 nm. Only after the fluorescence enhancement by APTES modification, the material showed a response to 1-naphthol (1-NP). Based on this, the molecularly imprinted polymers (MIPs) with ratiometric fluorescence were developed for the detection of 1-NP, that is, the synthetic raw material and the metabolite of the pesticide carbaryl. Under the excitation of 365 nm UV, the bright orange-red fluorescence (597 nm) of CdTeS QDs encapsulated in MIPs was quenched by 1-NP in the suspension, and 1-NP showed a gradually increasing blue emission (460 nm) with the increase of its concentration. This sensor has a good linear relationship between fluorescence intensity ratio (F460/F597) and 1-NP concentration (C1-NP) in a large concentration range (6.0-140.0 µM, LOD=0.45 µM, RSD<4.41%). It exhibits a visible fluorescence change from orange-red to blue-purple. Excellent recoveries in real samples were obtained by simulating carbaryl metabolism and demonstrated its potential in detection of 1-NP and carbaryl.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yue Xiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangquan Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Maoliang Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Ishibashi Y, Nagafuku N, Kanda Y, Suzuki I. Evaluation of neurotoxicity for pesticide-related compounds in human iPS cell-derived neurons using microelectrode array. Toxicol In Vitro 2023; 93:105668. [PMID: 37633473 DOI: 10.1016/j.tiv.2023.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
In vivo evaluations of chemicals in neurotoxicity have certain limitations due to the considerable time and cost required, necessity of extrapolation from rodents to humans, and limited information on toxicity mechanisms. To address this issue, the development of in vitro test methods using new approach methodologies (NAMs) is important to evaluate the chemicals in neurotoxicity. Microelectrode array (MEA) allows the assessment of changes in neural network activity caused by compound administration. However, studies on compound evaluation criteria are scarce. In this study, we evaluated the impact of pesticides on neural activity using MEA measurements of human iPSC-derived neurons. A principal component analysis was performed on the electrical physiological parameters obtained by MEA measurements, and the influence of excessive neural activity due to compound addition was defined using the standard deviation of neural activity with solvent addition as the reference. By using known seizurogenic compounds as positive controls for neurotoxicity in MEA and evaluating pesticides with insufficient verification of their neurotoxicity in humans, we demonstrated that these pesticides exhibit neurotoxicity in humans. In conclusion, our data suggest that the neurotoxicity evaluation method in human iPSC neurons using MEA measurements could be one of the in vitro neurotoxicity test methods that could replace animal experiments.
Collapse
Affiliation(s)
- Yuto Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan.
| |
Collapse
|
3
|
Chen C, Ji R, Li W, Lan Y, Guo J. Waste self-heating bag derived iron-based composite with abundant oxygen vacancies for highly efficient Fenton-like degradation of micropollutants. CHEMOSPHERE 2023; 326:138499. [PMID: 36963587 DOI: 10.1016/j.chemosphere.2023.138499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, iron-rich waste self-heating bag was reutilized as the raw material to prepare oxygen vacancies (OV) functionalized iron-based composite (iron oxide (Fe3O4)-carbon-vermiculite, viz. OV-ICV), which exhibited excellent performance in the Fenton-like degradation of micropollutants via peroxydisulfate (PDS) activation. Above 95% of 1.0 mg/L carbaryl (CB) was efficiently eliminated in the presence of 0.1 g/L of OV-ICV and 0.5 mmol/L of PDS over a wide pH range of 3-10 within 30 min. Besides, OV-ICV also showed acceptable adaptability, stability, and renewability. Imbedding OV into Fe3O4 structure significantly generated more active iron sites and localized electrons, promoted the charge transfer ability, and assisted the redox cycle of ≡Fe(III)/≡Fe(II) for PDS activation. Mechanism investigation demonstrated that superoxide radicals (O2•-) derived from the activation of molecular oxygen mediated the generation of H2O2, and both of them further enhanced the formation of more sulfate radicals (SO4•-) and hydroxyl radicals (•OH), which led to the efficient degradation and mineralization of CB. Furthermore, the degradation pathways of CB were proposed based on the intermediates identification. This work lays a foundation for the rational reutilization of iron-containing wastes modified with defect engineering in heterogeneous Fenton-like catalysis for the remediation of micropollutants wastewater.
Collapse
Affiliation(s)
- Cheng Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Runmei Ji
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wei Li
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210019, China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Jing Guo
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
4
|
Mohammed AA, Mohammad FK. Recognition and Assessment of Antidotal Effects of Diphenhydramine against Acute Carbaryl Insecticide Poisoning in a Chick Model. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/29732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diphenhydramine antagonizes poisoning produced by cholinesterase (ChE) inhibiting insecticides. This study examines the effects of diphenhydramine against acute poisoning induced by the carbamate insecticide carbaryl in a chick model. The effects of diphenhydramine on the 24 h median Lethal Dose (LD50), and acute toxicity of carbaryl were assessed in chicks (7-15 days old). The plasma and whole brain ChE activities were measured electrometrically in vitro and in vivo. Diphenhydramine at 10mg/Kg Body wt. administered intramuscularly 15 min before carbaryl dosing increased the oral LD50 value of carbaryl (207 mg/Kg Body wt.) by 62%. Carbaryl at 250 mg/Kg Body wt. has orally produced toxidrome of cholinergic poisoning with 100% lethality in 24 h. Diphenhydramine (10mg/ Kg Body wt.) used 15 min before carbaryl (250mg/Kg Body wt., orally) was the most effective dose (vs 5 and 20mg/Kg Body wt.) in delaying carbaryl-toxicity and increasing survivals in chicks. The intramuscular median effective dose (ED50) of diphenhydramine which prevented 24 h carbaryl-death in chicks was 8.6mg/ Kg Body wt. The antidotal response to diphenhydramine was similar to that of the standard antidote atropine sulfate. Diphenhydramine at 10mg/Kg Body wt., given immediately after carbaryl (200mg/Kg Body wt.), reduced the percentages of plasma and whole brain ChE inhibitions in vivo by 12- and 13%, respectively. Carbaryl (10μmol/L) in vitro inhibited ChE activities in the plasma and brain by 53 and 77%, respectively; these inhibitions were reduced by 13- and 14%, respectively, when diphenhydramine (10μmol/L) was added to in vitro reactions. Diphenhydramine exerted antidotal action against a model of acute and lethal carbaryl intoxication in chicks.
Collapse
|
5
|
Nair SR, Menacherry SPM, Renjith S, Manojkumar T, Aravind UK, Aravindakumar CT. Oxidation reactions of carbaryl in aqueous solutions. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Antidote activity and protective effects of Lysiphyllum strychnifolium (Craib) A. Schmitz extract against organophosphate pesticide in omethoate-treated rats. J Tradit Complement Med 2020; 11:189-196. [PMID: 34012865 PMCID: PMC8116719 DOI: 10.1016/j.jtcme.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
|
7
|
Tsatsakis A, Docea AO, Constantin C, Calina D, Zlatian O, Nikolouzakis TK, Stivaktakis PD, Kalogeraki A, Liesivuori J, Tzanakakis G, Neagu M. Genotoxic, cytotoxic, and cytopathological effects in rats exposed for 18 months to a mixture of 13 chemicals in doses below NOAEL levels. Toxicol Lett 2019; 316:154-170. [PMID: 31521832 DOI: 10.1016/j.toxlet.2019.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
The present study investigates the genotoxic and cytotoxic effects of long term exposure to low doses of a mixture consisting of methomyl, triadimefon, dimethoate, glyphosate, carbaryl, methyl parathion, aspartame, sodium benzoate, EDTA, ethylparaben, buthylparaben, bisphenol A and acacia gum in rats. Four groups of ten Sprangue Dawley rats (5 males and 5 females per group) were exposed for 18 months to the mixture in doses of 0xNOAEL, 0.0025xNOAEL, 0.01xNOAEL and 0.05xNOAEL (mg/kg bw/day). After 18 months of exposure, the rats were sacrificed and their organs were harvested. Micronuclei frequency was evaluated in bone marrow erythrocytes whereas the organs were cytopathologically examined by the touch preparation technique. The exposure to the mixture caused a genotoxic effect identified only in females. Cytopathological examination showed specific alterations of tissue organization in a tissue-type dependent manner. The observed effects were dose-dependent and correlated to various tissue parameters. Specifically, testes samples revealed degenerative and cellularity disorders, liver hepatocytes exhibited decreased glycogen deposition whereas degenerative changes were present in gastric cells. Lung tissue presented increased inflammatory cells infiltration and alveolar macrophages with enhanced phagocytic activity, whereas brain tissue exhibited changes in glial and astrocyte cells' numbers. In conclusion, exposure to very low doses of the tested mixture for 18 months induces genotoxic effects as well as monotonic cytotoxic effects in a tissue-dependent manner.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece; Spin-Off Toxplus S.A., 71601, Heraklion, Greece.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Carolina Constantin
- Department of Immunology, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Pathology Dept. Colentina Clinical Hospital, Bucharest, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | | | - Polychronis D Stivaktakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, Crete, Greece.
| | | | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003, Heraklion, Greece.
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Pathology Dept. Colentina Clinical Hospital, Bucharest, Romania.
| |
Collapse
|
8
|
Van Maele-Fabry G, Gamet-Payrastre L, Lison D. Residential exposure to pesticides as risk factor for childhood and young adult brain tumors: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2017. [PMID: 28623811 DOI: 10.1016/j.envint.2017.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Accumulating evidence suggests a positive association between exposure to non-agricultural pesticides and childhood brain tumors (CBT). OBJECTIVE (1) To conduct a systematic review and meta-analysis of published studies on the association between residential/household/domestic exposure to pesticides and childhood brain tumors. (2) To clarify variables that could impact the results. METHODS Publications in English were identified from a MEDLINE search through 28 February 2017 and from the reference list of identified publications. Risk estimates were extracted from 18 case-control studies published between 1979 and 2016 and study quality assessments were performed. Summary odds ratios (mOR) were calculated according to fixed and random-effect meta-analysis models. Separate analyses were conducted after stratification for study quality, critical exposure period, exposure location, specific exposures, pesticide category, application methods, type of pest treated, type of CBT, child's age at diagnosis and geographic location. RESULTS Statistically significant associations were observed with CBT after combining all studies (mOR: 1.26; 95% CI: 1.13-1.40) without evidence of inconsistency between study results or publication bias. Specifically, increased risks were observed for several groupings and more particularly for gliomas and exposure involving insecticides. Statistical significance was also reached for high quality studies, for all exposure periods, for indoor exposure and, more particularly, during the prenatal period for all stratifications involving insecticides (except for outdoor use), for pet treatments, for flea/tick treatment, for studies from USA/Canada and studies from Europe (borderline) as well as for data from studies including children of up to 10years at diagnosis and of up to 15years. CONCLUSIONS Our findings support an association between residential exposure to pesticides and childhood brain tumors. Although causality cannot be established, these results add to the evidence leading to recommend limiting residential use of pesticides and to support public health policies serving this objective.
Collapse
Affiliation(s)
- Geneviève Van Maele-Fabry
- Université catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Avenue E. Mounier 53.02, B-1200 Brussels, Belgium.
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS 180 chemin de Tournefeuille, BP 93173 Toulouse, France
| | - Dominique Lison
- Université catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Avenue E. Mounier 53.02, B-1200 Brussels, Belgium
| |
Collapse
|
9
|
Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. ENVIRONMENT INTERNATIONAL 2017; 99:55-77. [PMID: 27908457 PMCID: PMC5285268 DOI: 10.1016/j.envint.2016.11.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/19/2023]
Abstract
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Departamento de Ciências Fisiologicas, Universidade do Estado do Rio de Janeiro (UERJ), RJ, Brazil
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
10
|
Use of electroencephalography (EEG) to assess CNS changes produced by pesticides with different modes of action: Effects of permethrin, deltamethrin, fipronil, imidacloprid, carbaryl, and triadimefon. Toxicol Appl Pharmacol 2015; 282:184-94. [DOI: 10.1016/j.taap.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 01/20/2023]
|
11
|
Yoon M, Kedderis GL, Yan GZ, Clewell HJ. Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study. Toxicology 2014; 332:52-66. [PMID: 24863738 DOI: 10.1016/j.tox.2014.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 04/02/2014] [Accepted: 05/18/2014] [Indexed: 12/14/2022]
Abstract
In vitro-derived information has been increasingly used to support and improve human health risk assessment for exposure to chemicals. Physiologically based pharmacokinetic (PBPK) modeling is a key component in the movement toward in vitro-based risk assessment, providing a tool to integrate diverse experimental data and mechanistic information to relate in vitro effective concentrations to equivalent human exposures. One of the challenges, however, in the use of PBPK models for this purpose has been the need for extensive chemical-specific parameters. With the remarkable advances in in vitro methodologies in recent years, in vitro-derived parameters can now be easily incorporated into PBPK models. In this study we demonstrate an in vitro data based parameterization approach to develop a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model, using carbaryl as a case study. In vitro experiments were performed to provide the chemical-specific pharmacokinetic (PK) and pharmacodynamic (PD) parameters for carbaryl in the PBPK model for this compound. Metabolic clearance and cholinesterase (ChE) interaction parameters for carbaryl were measured in rat and human tissues. These in vitro PK and PD data were extrapolated to parameters in the whole body PBPK model using biologically appropriate scaling. The PBPK model was then used to predict the kinetics and ChE inhibition dynamics of carbaryl in vivo. This case study with carbaryl provides a reasonably successful example of utilizing the in vitro to in vivo extrapolation (IVIVE) approach for PBPK model development. This approach can be applied to other carbamates with an anticholinesterase mode of action as well as to environmental chemicals in general with further refinement of the current shortcomings in the approach. It will contribute to minimizing the need for in vivo human data for PBPK model parameterization and evaluation in human risk assessments.
Collapse
Affiliation(s)
- Miyoung Yoon
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | - Grace Zhixia Yan
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | - Harvey J Clewell
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Investigation of kinetic interactions between approved oximes and human acetylcholinesterase inhibited by pesticide carbamates. Chem Biol Interact 2013; 206:569-72. [PMID: 23962483 DOI: 10.1016/j.cbi.2013.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/26/2013] [Accepted: 08/06/2013] [Indexed: 11/20/2022]
Abstract
Carbamates are widely used for pest control and act primarily by inhibition of insect and mammalian acetylcholinesterase (AChE). Accidental or intentional uptake of carbamates may result in typical signs and symptoms of cholinergic overstimulation which cannot be discriminated from those of organophosphorus pesticide poisoning. There is an ongoing debate whether standard treatment with atropine and oximes should be recommended for human carbamate poisoning as well, since in vitro and in vivo animal data indicate a deleterious effect of oximes when used in combination with the N-methyl carbamate carbaryl. Therefore, we performed an in vitro kinetic study to investigate the effect of clinically used oximes on carbamoylation and decarbamoylation of human AChE. It became evident that pralidoxime and obidoxime in therapeutic concentrations aggravate the inhibition of AChE by carbaryl and propoxur, with obidoxime being substantially more potent compared to 2-PAM. However, obidoxime had no impact on the decarbamoylation kinetics. Hence, the administration of 2-PAM and especially of obidoxime to severely propoxur and carbaryl poisoned humans cannot be recommended.
Collapse
|
13
|
Moser VC, Phillips PM, McDaniel KL, Zehr RD, MacMillan DK, MacPhail RC. Carbaryl and 1-naphthol tissue levels and related cholinesterase inhibition in male Brown Norway rats from preweaning to senescence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:1151-1167. [PMID: 24279816 DOI: 10.1080/15287394.2013.844751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Studies incorporating both toxicokinetic and dynamic factors provide insight into chemical sensitivity differences across the life span. Tissue (brain, plasma, liver) levels of the N-methyl carbamate carbaryl, and its metabolite 1-naphthol, were determined and related to brain and RBC cholinesterase (ChE) inhibition in the same animals. Dose-response (3, 7.5, 15, or 22.5 mg/kg, 40-45 min postdosing) and time course (3 or 15 mg/kg at 30, 60, 120, or 240 min postdosing) of acute effects of carbaryl (oral gavage) in preweanling (postnatal day [PND] 18) and adult male Brown Norway rats from adolescence to senescence (1, 4, 12, 24 mo) were compared. At all ages there were dose-related increases in carbaryl and 1-naphthol in the dose-response study, and the time-course study showed highest carbaryl levels at 30 min postdosing. There were, however, age-related differences in that the 1- and 4-mo rats showed the lowest levels of carbaryl and 1-naphthol, and PND18 and 24-mo rats had similar, higher levels. The fastest clearance (shortest half-lives) was observed in 1- and 4-mo rats. Carbaryl levels were generally higher than 1-naphthol in brain and plasma, but in liver, 1-naphthol levels were similar to or greater than carbaryl. Brain ChE inhibition closely tracked brain carbaryl concentrations regardless of the time after dosing, but there was more variability in the relationship between RBC ChE and plasma carbaryl levels. Within-subject analyses suggested somewhat more brain ChE inhibition at lower carbaryl levels only in the PND18 rats. These findings may reflect maturation followed by decline in kinetic factors over the life span.
Collapse
Affiliation(s)
- Virginia C Moser
- a Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| | | | | | | | | | | |
Collapse
|