1
|
Liang C, Lin L, Hu J, Ma Y, Li Y, Sun Z. Comprehensive pulmonary metabolic responses to silica nanoparticles exposure in Fisher 344 rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116256. [PMID: 38554605 DOI: 10.1016/j.ecoenv.2024.116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Silica nanoparticles (SiNPs) could induce adverse pulmonary effects, but the mechanism was not clear enough. Metabolomics is a sensitive and high-throughput approach that could investigate the intrinsic causes of adverse health effects caused by SiNPs. The current investigation represented the first in vivo metabolomics study examining the chronic pulmonary toxicity of SiNPs at a low dosage, mimicking real human exposure situation. The recovery process after the cessation of exposure was also taken into consideration. Fisher 344 rats were treated with either saline or SiNPs for 6 months. Half of the animals in each group received an additional six-month period for recovery. The findings indicated that chronic low-level exposure to SiNPs resulted in notable alterations in pulmonary metabolism of amino acids, lipids, carbohydrates, and nucleotides. SiNPs exerted an impact on various metabolites and metabolic pathways which are linked to oxidative stress, inflammation and tumorigenesis. These included but were not limited to L-carnitine, spermidine, taurine, xanthine, and glutathione metabolism. The metabolic alterations caused by SiNPs exhibited a degree of reversibility. However, the interference of SiNPs on two metabolic pathways related to tumorigenesis was observed to persist after a recovery period. The two metabolic pathways are glycerophospholipid metabolism as well as phenylalanine, tyrosine and tryptophan biosynthesis. This study elucidated the metabolic alterations induced by chronic low-level exposure to SiNPs and presented novel evidence of the chronic pulmonary toxicity and carcinogenicity of SiNPs, from a metabolomic perspective.
Collapse
Affiliation(s)
- Chen Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junjie Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
2
|
Gurunathan S, Kim JH. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. Int J Nanomedicine 2022; 17:5697-5731. [PMID: 36466784 PMCID: PMC9717435 DOI: 10.2147/ijn.s385113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells. METHODS Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Graphene oxide (10-50 μg/mL), cisplatin (2-10 μg/mL), and C6-ceramide (5-25 μM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways. CONCLUSION This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
3
|
Pulmonary Toxicity of Silica Linked to Its Micro- or Nanometric Particle Size and Crystal Structure: A Review. NANOMATERIALS 2022; 12:nano12142392. [PMID: 35889616 PMCID: PMC9318389 DOI: 10.3390/nano12142392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Silicon dioxide (SiO2) is a mineral compound present in the Earth’s crust in two mineral forms: crystalline and amorphous. Based on epidemiological and/or biological evidence, the pulmonary effects of crystalline silica are considered well understood, with the development of silicosis, emphysema, chronic bronchitis, or chronic obstructive pulmonary disease. The structure and capacity to trigger oxidative stress are recognized as relevant determinants in crystalline silica’s toxicity. In contrast, natural amorphous silica was long considered nontoxic, and was often used as a negative control in experimental studies. However, as manufactured amorphous silica nanoparticles (or nanosilica or SiNP) are becoming widely used in industrial applications, these paradigms must now be reconsidered at the nanoscale (<100 nm). Indeed, recent experimental studies appear to point towards significant toxicity of manufactured amorphous silica nanoparticles similar to that of micrometric crystalline silica. In this article, we present an extensive review of the nontumoral pulmonary effects of silica based on in vitro and in vivo experimental studies. The findings of this review are presented both for micro- and nanoscale particles, but also based on the crystalline structure of the silica particles.
Collapse
|
4
|
Bláhová L, Nováková Z, Večeřa Z, Vrlíková L, Dočekal B, Dumková J, Křůmal K, Mikuška P, Buchtová M, Hampl A, Hilscherová K, Bláha L. The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology 2019; 14:214-231. [PMID: 31726900 DOI: 10.1080/17435390.2019.1685696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although the production of engineered nanoparticles increases our knowledge of toxicity and mechanisms of bioactivity during relevant exposures is lacking. In the present study mice were exposed to PbO nanoparticles (PbONP; 192.5 µg/m3; 1.93 × 106 particles/cm3) for 2, 5 and 13 weeks through continuous inhalation. The analyses addressed Pb and PbONP distribution in organs (lung, liver, kidney, brain) using electrothermal atomic absorption spectrometry and transmission electron microscopy, as well as histopathology and analyses of oxidative stress biomarkers. New LC-MS/MS methods were validated for biomarkers of lipid damage F2-isoprostanes (8-iso-prostaglandins F2-alpha and E2) and hydroxylated deoxoguanosine (8-OHdG, marker of DNA oxidation). Commonly studied malondialdehyde was also measured as TBARS by HPLC-DAD. The study revealed fast blood transport and distribution of Pb from the lung to the kidney and liver. A different Pb accumulation trend was observed in the brain, suggesting transfer of NP along the nasal nerve to the olfactory bulbs. Long-term inhalation of PbONP caused lipid peroxidation in animal brains (increased levels of TBARS and both isoprostanes). Membrane lipid damage was also detected in the kidney after shorter exposures, but not in the liver or lung. On the contrary, longer exposures to PbONP increased levels of 8-OHdG in the lung and temporarily increased lung weight after 2 and 5 weeks of exposure. The histopathological changes observed mainly in the lung and liver indicated inflammation and general toxicity responses. The present long-term inhalation study indicates risks of PbONP to both human health and the environment.
Collapse
Affiliation(s)
- Lucie Bláhová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Zuzana Nováková
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Zbyněk Večeřa
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Lucie Vrlíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Bohumil Dočekal
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Dumková
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic
| | - Kamil Křůmal
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Pavel Mikuška
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Marcela Buchtová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic
| | - Klára Hilscherová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Arezzini B, Vecchio D, Signorini C, Stringa B, Gardi C. F 2-isoprostanes can mediate bleomycin-induced lung fibrosis. Free Radic Biol Med 2018; 115:1-9. [PMID: 29129520 DOI: 10.1016/j.freeradbiomed.2017.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 12/23/2022]
Abstract
F2-isoprostanes (F2-IsoPs) have been considered markers of oxidative stress in various pulmonary diseases, but little is known about their possible role in pulmonary fibrosis. In this study, we have investigated the potential key role of F2-IsoPs as markers and mediators of bleomycin (BLM)-induced pulmonary fibrosis in rats. During the in vivo study, plasma F2-IsoPs showed a peak at 7 days and remained elevated for the entire experimental period. Lung F2-IsoP content nearly tripled 7 days following the intratracheal instillation of BLM, and by 28 days, the value increased about fivefold compared to the controls. Collagen deposition correlated with F2-IsoP content in the lung. Furthermore, from day 21 onwards, lung sections from BLM-treated animals showed α-smooth muscle actin (α-SMA) positive cells, which were mostly evident at 28 days. In vitro studies performed in rat lung fibroblasts (RLF) demonstrated that either BLM or F2-IsoPs stimulated both cell proliferation and collagen synthesis. Moreover, RLF treated with F2-IsoPs showed a significant increase of α-SMA expression compared to control, indicating that F2-IsoPs can readily activate fibroblasts to myofibroblasts. Our data demonstrated that F2-IsoPs can be mediators of key events for the onset and development of lung fibrosis, such as cell proliferation, collagen synthesis and fibroblast activation. Immunocytochemistry analysis, inhibition and binding studies demonstrated the presence of the thromboxane A2 receptor (TP receptor) on lung fibroblasts and suggested that the observed effects may be elicited through the binding to this receptor. Our data added a new perspective on the role of F2-IsoPs in lung fibrosis by providing evidence of a profibrotic role for these mediators in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Beatrice Arezzini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daniela Vecchio
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Blerta Stringa
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
6
|
Kim YR, Lee SY, Lee EJ, Park SH, Seong NW, Seo HS, Shin SS, Kim SJ, Meang EH, Park MK, Kim MS, Kim CS, Kim SK, Son SW, Seo YR, Kang BH, Han BS, An SSA, Lee BJ, Kim MK. Toxicity of colloidal silica nanoparticles administered orally for 90 days in rats. Int J Nanomedicine 2014; 9 Suppl 2:67-78. [PMID: 25565827 PMCID: PMC4279771 DOI: 10.2147/ijn.s57925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study was undertaken to investigate the potential toxicity and establish the no observed adverse effect level (NOAEL) and target organ(s) of negatively charged colloidal silica particles of different sizes, ie, SiO2EN20(−) (20 nm) or SiO2EN100(−) 2(100 nm), administered by gavage in Sprague-Dawley rats. After verification of the physicochemical properties of the SiO2 particles to be tested, a preliminary dose range-finding study and 90-day repeated dose study were conducted according to the Organisation for Economic Cooperation and Development test guideline. Based on the results of the 14-day dose range-finding study, a high dose was determined to be 2,000 mg/kg, and middle and low doses were set at 1,000 and 500 mg/kg, respectively. In the 90-day toxicity study, there were no animal deaths in relation to administration of SiO2 particles of either size. In addition, no treatment-related clinical changes or histopathological findings were observed in any of the experimental groups. Moreover, no difference in toxic effects from chronic exposure to SiO2EN20(−)(20 nm) or SiO2EN100(−) (100 nm) was observed. The results of this study indicate that the NOAEL for SiO2EN20(−) and SiO2EN100(−) would most likely be 2,000 mg/kg, and no target organ was identified in rats of either sex.
Collapse
Affiliation(s)
- Yu-Ri Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Seung-Young Lee
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Eun Jeong Lee
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Sung Ha Park
- Department of Biochemistry, University of Bath, Bath, UK
| | - Nak-won Seong
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Heung-Sik Seo
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Sung-Sup Shin
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Seon-Ju Kim
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Eun-Ho Meang
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Myeong-Kyu Park
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Min-Seok Kim
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Cheol-Su Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Gangwon, Republic of Korea
| | - Soo-Ki Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Gangwon, Republic of Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University, Seoul, Republic of Korea
| | - Boo Hyon Kang
- Nonclinical Research Institute, Chemon Inc, Gyeonggi, Republic of Korea
| | - Beom Seok Han
- Toxicological Research Center, Hoseo University, Chungnam, Republic of Korea
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Gyeonggi, Republic of Korea
| | - Beom-Jun Lee
- College of Veterinary Medicine, Chungbuk National University, Chungbuk, Republic of Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| |
Collapse
|
7
|
Effect of nanoparticles exposure on fractional exhaled nitric oxide (FENO) in workers exposed to nanomaterials. Int J Mol Sci 2014; 15:878-94. [PMID: 24413755 PMCID: PMC3907844 DOI: 10.3390/ijms15010878] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/26/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
Fractional exhaled nitric oxide (FENO) measurement is a useful diagnostic test of airway inflammation. However, there have been few studies of FENO in workers exposed to nanomaterials. The purpose of this study was to examine the effect of nanoparticle (NP) exposure on FENO and to assess whether the FENO is increased in workers exposed to nanomaterials (NM). In this study, both exposed workers and non-exposed controls were recruited from NM handling plants in Taiwan. A total of 437 subjects (exposed group = 241, non-exposed group = 196) completed the FENO and spirometric measurements from 2009–2011. The authors used a control-banding (CB) matrix to categorize the risk level of each participant. In a multivariate linear regression analysis, this study found a significant association between risk level 2 of NP exposure and FENO. Furthermore, asthma, allergic rhinitis, peak expiratory flow rate (PEFR), and NF-κB were also significantly associated with FENO. When the multivariate logistic regression model was adjusted for confounders, nano-TiO2 in all of the NM exposed categories had a significantly increased risk in FENO > 35 ppb. This study found associations between the risk level of NP exposure and FENO (particularly noteworthy for Nano-TiO2). Monitoring FENO in the lung could open up a window into the role nitric oxide (NO) may play in pathogenesis.
Collapse
|
8
|
Mohamud R, Xiang SD, Selomulya C, Rolland JM, O’Hehir RE, Hardy CL, Plebanski M. The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev 2013; 46:176-90. [DOI: 10.3109/03602532.2013.859688] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
De Simone U, Manzo L, Profumo A, Coccini T. In vitro toxicity evaluation of engineered cadmium-coated silica nanoparticles on human pulmonary cells. J Toxicol 2013; 2013:931785. [PMID: 24194755 PMCID: PMC3806223 DOI: 10.1155/2013/931785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/26/2013] [Indexed: 01/16/2023] Open
Abstract
Cytotoxicity of cadmium-containing silica nanoparticles Cd-SiO2NPs (0.05-100 µg/mL) versus SiO2NPs and CdCl2 was evaluated by an in vitro test battery in A549 by assessing (i) mitochondrial function, (ii) membrane integrity/cell morphology, (iii) cell growth/proliferation, (iv) apoptotic pathway, (v) oxidative stress, after short- (24-48 h) and long-term (10 days) exposure. Both Cd-SiO2NPs and CdCl2 produced dose-dependent cytotoxic effects: (i) MTT-assay: similar cytotoxicity pattern was observed at both 24 and 48 h, with a more Cd-SiO2NPs pronounced effect than CdCl2. Cd-SiO2NPs induced mortality (about 50%) at 1 μ g/mL, CdCl2 at 25 μ g/mL; (ii) calcein-AM/PI staining: decrease in cell viability, noticeable at 25 μ g/mL, enhanced markedly at 50 and 100 μ g/mL, after 24 h. Cd-SiO2NPs induced higher mortality than CdCl2 (25% versus 4%, resp., at 25 μ g/mL) with further exacerbation after 48h; (iii) clonogenic assay: exposure for longer period (10 days) compromised the A549 proliferative capacity at very low dose (0.05 μ g/mL); (iv) a progressive activation of caspase-3 immunolabelling was detected already at 1 μ g/mL; (v) GSH intracellular level was modified by all compounds. In summary, in vitro data demonstrated that both Cd-SiO2NPs and CdCl2 affected all investigated endpoints, more markedly after Cd-SiO2NPs, while SiO2NPs influenced GSH only.
Collapse
Affiliation(s)
- Uliana De Simone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Luigi Manzo
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Laboratory of Clinical Toxicology, IRCCS Maugeri Foundation, Medical Institute of Pavia, 27100 Pavia, Italy
| | | | - Teresa Coccini
- Laboratory of Clinical Toxicology, IRCCS Maugeri Foundation, Medical Institute of Pavia, 27100 Pavia, Italy
| |
Collapse
|