1
|
Abdelaziz I, Bounaama A, Djerdjouri B, Amir-Tidadini ZC. Low-dose dimethylfumarate attenuates colitis-associated cancer in mice through M2 macrophage polarization and blocking oxidative stress. Toxicol Appl Pharmacol 2024; 489:117018. [PMID: 38945373 DOI: 10.1016/j.taap.2024.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Colitis-associated cancer (CAC) is an aggressive subtype of colorectal cancer that can develop in ulcerative colitis patients and is driven by chronic inflammation and oxidative stress. Current chemotherapy for CAC, based on 5-fluorouracil and oxalipltin, is not fully effective and displays severe side effects, prompting the search for alternative therapies. Dimethylfumarate (DMF), an activator of the nuclear factor erythroid 2-related factor 2 (NRF2), is a potent antioxidant and immunomodelatrory drug used in the treatment of multiple sclerosis and showed a strong anti-inflammatory effect on experimental colitis. Here, we investigated the chemotherapeutic effect of DMF on an experimental model of CAC. Male NMRI mice were given two subcutaneous injections of 1,2 Dimethylhydrazine (DMH), followed by three cycles of dextran sulfate sodium (DSS). Low-dose (DMF30) and high-dose of DMF (DMF100) or oxaliplatin (OXA) were administered from the 8th to 12th week of the experiment, and then the colon tissues were analysed histologically and biochemically. DMH/DSS induced dysplastic aberrant crypt foci (ACF), oxidative stress, and severe colonic inflammation, with a predominance of pro-inflammatory M1 macrophages. As OXA, DMF30 reduced ACF multiplicity and crypt dysplasia, but further restored redox status, and reduced colitis severity by shifting macrophages towards the anti-inflammatory M2 phenotype. Surprisingly, DMF100 exacerbated ACF multiplicity, oxidative stress, and colon inflammation, likely through NRF2 and p53 overexpression in colonic inflammatory cells. DMF had a dual effect on CAC. At low dose, DMF is chemotherapeutic and acts as an antioxidant and immunomodulator, whereas at high dose, DMF is pro-oxidant and exacerbates colitis-associated cancer.
Collapse
Affiliation(s)
- Ismahane Abdelaziz
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Abdelkader Bounaama
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.
| | - Bahia Djerdjouri
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | | |
Collapse
|
2
|
Yang J, Sun Q, Liu X, Yang Y, Rong R, Yan P, Xie Y. Targeting Notch signaling pathways with natural bioactive compounds: a promising approach against cancer. Front Pharmacol 2024; 15:1412669. [PMID: 39092224 PMCID: PMC11291470 DOI: 10.3389/fphar.2024.1412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Notch signaling pathway is activated abnormally in solid and hematological tumors, which perform essential functions in cell differentiation, survival, proliferation, and angiogenesis. The activation of Notch signaling and communication among Notch and other oncogenic pathways heighten malignancy aggressiveness. Thus, targeting Notch signaling offers opportunities for improved survival and reduced disease incidence. Already, most attention has been given to its role in the cancer cells. Recent research shows that natural bioactive compounds can change signaling molecules that are linked to or interact with the Notch pathways. This suggests that there may be a link between Notch activation and the growth of tumors. Here, we sum up the natural bioactive compounds that possess inhibitory effects on human cancers by impeding the Notch pathway and preventing Notch crosstalk with other oncogenic pathways, which provoke further study of these natural products to derive rational therapeutic regimens for the treatment of cancer and develop novel anticancer drugs. This review revealed Notch as a highly challenging but promising target in oncology.
Collapse
Affiliation(s)
- Jia Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Yang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Peiyu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Cordeiro MCC, Tomé FD, Arruda FS, da Fonseca SG, Nagib PRA, Celes MRN. Curcumin as a Stabilizer of Macrophage Polarization during Plasmodium Infection. Pharmaceutics 2023; 15:2505. [PMID: 37896265 PMCID: PMC10610200 DOI: 10.3390/pharmaceutics15102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Malaria is a parasitic infection responsible for high morbidity and mortality rates worldwide. During the disease, phagocytosis of infected red blood cells by the macrophages induces the production of reactive oxygen (ROS) and nitrogen species (RNS), culminating in parasite death. Curcumin (CUR) is a bioactive compound that has been demonstrated to reduce the production of pro-inflammatory cytokines and chemokines produced by macrophages but to reduce parasitemia in infected mice. Hence, the main purpose of this study is to investigate whether curcumin may interfere with macrophage function and polarization after Plasmodium berghei infection in vitro. In our findings, non-polarized macrophage (M0), classically activated (M1), and alternatively activated (M2) phenotypes showed significantly increased phagocytosis of infected red blood cells (iRBCs) when compared to phagocytosis of uninfected red blood cells (RBCs) 3 h after infection. After 24 h, M1 macrophages exposed to RBCs + CUR showed greater elimination capacity when compared to macrophages exposed to iRBCs + CUR, suggesting the interference of curcumin with the microbicidal activity. Additionally, curcumin increased the phagocytic activity of macrophages when used in non-inflammatory conditions (M0) and reduced the inducible nitric oxide synthase (iNOS) and arginase activities in all macrophage phenotypes infected (M0, M1, and M2), suggesting interference in arginine availability by curcumin and balance promotion in macrophage polarization in neutral phenotype (M0). These results support the view of curcumin treatment in malaria as an adjuvant, promoting a balance between pro- and anti-inflammatory responses for a better clinical outcome.
Collapse
Affiliation(s)
- Maria Clara C. Cordeiro
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Fernanda D. Tomé
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Felipe S. Arruda
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Simone Gonçalves da Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| | - Patrícia R. A. Nagib
- Department of Microbiology, Immunology and Parasitology, Biological Science Institute, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Mara R. N. Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (M.C.C.C.); (F.D.T.); (F.S.A.); (S.G.d.F.)
| |
Collapse
|
4
|
Wang M, Liu X, Chen T, Cheng X, Xiao H, Meng X, Jiang Y. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front Oncol 2022; 12:956793. [PMID: 36158694 PMCID: PMC9496650 DOI: 10.3389/fonc.2022.956793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a common type of malignant digestive tract tumor with a high incidence rate worldwide. Currently, the clinical treatment of CRC predominantly include surgical resection, postoperative chemotherapy, and radiotherapy. However, these treatments contain severe limitations such as drug side effects, the risk of recurrence and drug resistance. Some natural compounds found in plants, fungi, marine animals, and bacteria have been shown to inhibit the occurrence and development of CRC. Although the explicit molecular mechanisms underlying the therapeutic effects of these compounds on CRC are not clear, classical signaling transduction pathways such as NF-kB and Wnt/β-catenin are extensively regulated. In this review, we have summarized the specific mechanisms regulating the inhibition and development of CRC by various types of natural compounds through nine signaling pathways, and explored the potential therapeutic values of these natural compounds in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Mingchuan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianjun Liu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tong Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianbin Cheng
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yang Jiang,
| |
Collapse
|
5
|
Clapper ML, Chang WCL, Cooper HS. Dysplastic Aberrant Crypt Foci: Biomarkers of Early Colorectal Neoplasia and Response to Preventive Intervention. Cancer Prev Res (Phila) 2021; 13:229-240. [PMID: 32132117 DOI: 10.1158/1940-6207.capr-19-0316] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/04/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
The discovery of aberrant crypt foci (ACF) more than three decades ago not only enhanced our understanding of how colorectal tumors form, but provided new opportunities to detect lesions prior to adenoma development and intervene in the colorectal carcinogenesis process even earlier. Because not all ACF progress to neoplasia, it is important to stratify these lesions based on the presence of dysplasia and establish early detection methods and interventions that specifically target dysplastic ACF (microadenomas). Significant progress has been made in characterizing the morphology and genetics of dysplastic ACF in both preclinical models and humans. Image-based methods have been established and new techniques that utilize bioactivatable probes and capture histologic abnormalities in vivo are emerging for lesion detection. Successful identification of agents that target dysplastic ACF holds great promise for intervening even earlier in the carcinogenesis process to maximize tumor inhibition. Future preclinical and clinical prevention studies should give significant attention to assessing the utility of dysplastic ACF as the earliest identifiable biomarker of colorectal neoplasia and response to therapy.See all articles in this Special Collection Honoring Paul F. Engstrom, MD, Champion of Cancer Prevention.
Collapse
Affiliation(s)
- Margie L Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Wen-Chi L Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harry S Cooper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Curcumin-Polyallyhydrocarbon Nanocapsules Potently Suppress 1,2-Dimethylhydrazine-Induced Colorectal Cancer in Mice by Inhibiting Wnt/β-Catenin Pathway. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00842-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
El-Mekkawy HI, Al-Kahtani MA, Shati AA, Alshehri MA, Al-Doaiss AA, Elmansi AA, Ahmed AE. Black tea and curcumin synergistically mitigate the hepatotoxicity and nephropathic changes induced by chronic exposure to aflatoxin-B1 in Sprague-Dawley rats. J Food Biochem 2020; 44:e13346. [PMID: 32602579 DOI: 10.1111/jfbc.13346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023]
Abstract
The study aimed to clarify the characteristics of black tea (BTE) and/or curcumin (CMN) against aflatoxin-B1 (AFB1). Forty eight adult male Sprague-Dawley rats were divided into eight groups. G1 was non-treated control. G2, G3, and G4 were olive oil, BTE, and CMN, respectively. G5 was olive oil-dissolved AFB1 (25 µg/kg b.w). G6, G7, and G8 were AFB1 along with BTE (2%), CMN (200 mg/kg b.w.), and BTE plus CMN, respectively. All treatments were orally given for consecutive 90 days. After treatment period, rats were sacrificed. Serobiochemical analysis and histopathology showed hepatorenal dysfunction in response to AFB1. Glutathione-antioxidants were significantly decreased versus increased lipid peroxides (p < .05-.001). AFB1 significantly increased the expression of the antitumor p53, but decreased that of antiapoptotic Bcl2 in liver or kidney tissue, either (p < .05). BTE or CMN ameliorated those changes induced by AFB1 in both liver and kidney with highly pronounced improvement when combined BTE/CMN was used. PRACTICAL APPLICATIONS: Black tea (BTE) and curcumin (CMN) were known for their antioxidant effects, and several studies reported their independent effects against different toxicities including aflatoxicosis. The current study clarifies the ameliorative characteristics of both agents; BTE and/or CMN, against the toxicity resulted from the chronic exposure to aflatoxin-B1 (AFB1) (25 µg/kg b.w. for consecutive 90 days). The dose of either agents, BTE or CMN, was 200 mg/kg b.w. along with AFB1. The pathologic changes, serobiochemical parameters, oxidative stress, histological changes, and the molecular disruption, induced by AFB1 in both liver and kidney were obviously and significantly ameliorated after BTE and/or CMN treatments in variable potencies where both agents showed the most effective antitoxic capacities.
Collapse
Affiliation(s)
- Haitham I El-Mekkawy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Al-Kahtani
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Amin A Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Histology and Anatomy, Faculty of Medicine, Sana'a University, Sana'a, Republic of Yemen
| | - Ahmed A Elmansi
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
8
|
Santana-Gálvez J, Villela-Castrejón J, Serna-Saldívar SO, Cisneros-Zevallos L, Jacobo-Velázquez DA. Synergistic Combinations of Curcumin, Sulforaphane, and Dihydrocaffeic Acid against Human Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21093108. [PMID: 32354075 PMCID: PMC7246525 DOI: 10.3390/ijms21093108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 01/13/2023] Open
Abstract
Nutraceutical combinations that act synergistically could be a powerful solution against colon cancer, which is the second deadliest malignancy worldwide. In this study, curcumin (C), sulforaphane (S), and dihydrocaffeic acid (D, a chlorogenic acid metabolite) were evaluated, individually and in different combinations, over the viability of HT-29 and Caco-2 colon cancer cells, and compared against healthy fetal human colon (FHC) cells. The cytotoxic concentrations to kill 50%, 75%, and 90% of the cells (CC50, CC75, and CC90) were obtained, using the MTS assay. Synergistic, additive, and antagonistic effects were determined by using the combination index (CI) method. The 1:1 combination of S and D exerted synergistic effects against HT-29 at 90% cytotoxicity level (doses 90:90 µM), whereas CD(1:4) was synergistic at all cytotoxicity levels (9:36–34:136 µM) and CD(9:2) at 90% (108:24 µM) against Caco-2 cells. SD(1:1) was significantly more cytotoxic for cancer cells than healthy cells, while CD(1:4) and CD(9:2) were similarly or more cytotoxic for healthy cells. Therefore, the SD(1:1) combination was chosen as the best. A model explaining SD(1:1) synergy is proposed. SD(1:1) can be used as a basis to develop advanced food products for the prevention/co-treatment of colon cancer.
Collapse
Affiliation(s)
- Jesús Santana-Gálvez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico
| | - Javier Villela-Castrejón
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico
| | - Sergio O. Serna-Saldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico
- Correspondence: ; Tel.: +52-33-3669-3000
| |
Collapse
|
9
|
Selvam C, Prabu SL, Jordan BC, Purushothaman Y, Umamaheswari A, Hosseini Zare MS, Thilagavathi R. Molecular mechanisms of curcumin and its analogs in colon cancer prevention and treatment. Life Sci 2019; 239:117032. [PMID: 31704450 DOI: 10.1016/j.lfs.2019.117032] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer remains to be the most prevalent malignancy in humans and 1.5 million men and women living in the United States are diagnosed with colorectal cancer, with a predicted 145,600 new cases to be diagnosed in 2019. Curcuminoids and its synthetic analogs are now of interest due to their bioactive attributes, especially their action as anticancer activity in various cancer cell line models. Several in vivo and in vitro studies have substantially proved their anticancer activities against colon cancer cell lines. Curcumin analogues like IND-4, FLLL, GO-Y030 and C086 have demonstrated to produce greater cytotoxicity when experimentally studied and study results from many have been suggested to be the same. Combination of curcumin with therapeutic cancer agents like tolfenamic acid, 5-fluorouracil, resveratrol and dasatinib showed improved cytotoxicity and chemotherapeutic effect. The results propose that employment of curcumin with novel drug delivery systems like liposome, micelles and nanoparticle have been performed which could improve the therapeutic efficacy against colon cancer. The present review highlights the mechanism of action, synergistic effect and novel delivery methods to improve the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA.
| | - Sakthivel Lakshmana Prabu
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Thiruchirappalli, India
| | - Brian C Jordan
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Yasodha Purushothaman
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Appavoo Umamaheswari
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Thiruchirappalli, India
| | - Maryam Sadat Hosseini Zare
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
10
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Moradi-Marjaneh R, Hassanian SM, Rahmani F, Aghaee-Bakhtiari SH, Avan A, Khazaei M. Phytosomal Curcumin Elicits Anti-tumor Properties Through Suppression of Angiogenesis, Cell Proliferation and Induction of Oxidative Stress in Colorectal Cancer. Curr Pharm Des 2019; 24:4626-4638. [DOI: 10.2174/1381612825666190110145151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022]
Abstract
Background:
Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality
in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic
potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been
explored.
Methods:
The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was
assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also
tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was
examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase
(SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by
qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the
measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue.
Results:
Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also
decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data
showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling
regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect.
Conclusion:
Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be
used as a complementary treatment in clinical settings.
Collapse
Affiliation(s)
| | - Seyed M. Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H. Aghaee-Bakhtiari
- Bioinformatics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
13
|
Moulahoum H, Boumaza BMA, Ferrat M, Nagy AL, Olteanu DE, Bounaama A, Clichici S. Aberrant crypt foci are regionally affected by zinc treatment in a 1,2-dimethylhydrazine induced colon carcinogenesis model. J Trace Elem Med Biol 2018; 47:21-30. [PMID: 29544804 DOI: 10.1016/j.jtemb.2018.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 01/19/2023]
Abstract
Zinc is a trace element widely known for its marked antioxidant properties. To gain more insight into the site- and time- specific mechanisms by which it induces chemoprevention, this study was elaborated over a pre-cancerous model of colon carcinogenesis. Colon cancer was induced by 1,2-dimethylhydrazine (DMH) in mice (20 mg/kg for 2 weeks) and groups of animals were supplemented with or without zinc sulfate (ZnSO4, 200 mg/L) in drinking water for 4, 10 or 14 weeks. Colon tissues were collected for pathological observation, analyzing aberrant crypt (AC) and aberrant crypt foci (ACF) formations, multiplicity and distribution. Similarly, histological assessment and mucin production, as well as oxidative stress markers estimation was performed for the different groups. Results showed a significant increase in ACF and AC numbers, ACF multiplicity and demonstrated stronger distal occurrence than in the proximal after DHM administration. Histopathological analysis presented marked structural alterations and mucin loss in the distal than the proximal colons. A significant increase in myeloperoxidase (MPO), nitric oxide (NO), L-ornithine and malondialdehyde (MDA) levels was observed followed by a significant decrease in antioxidant markers (superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH)). Oral ZnSO4 supplementation (continuous or partial) induced significant decrease in ACF, AC numbers and multiplicity, restored histological architecture and mucin production, and a significant decrease in proinflammatory markers while it reduced antioxidants to normal levels. From this study, insight was obtained on the use of ZnSO4 as a chemopreventive agent and shed light on its potential, as a supplement in nutraceutical approaches.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Laboratory of Cell and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria; Biochemistry Department, Faculty of Sciences, Ege University, Izmir, Turkey.
| | - Belkacem Mohamed Amine Boumaza
- Laboratory of Cell and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Meriem Ferrat
- Laboratory of Cell and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Andras-Laszlo Nagy
- Pathology Department, Universitatea de ştiinţe Agricole şi Medicinǎ Veterinarǎ (USAMV), Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Physiology Department, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Abdelkader Bounaama
- Laboratory of Cell and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Simona Clichici
- Physiology Department, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| |
Collapse
|
14
|
Ojo OA, Ojo AB, Osukoya OA, Ajiboye BO. Aqueous Extract of Carica Papaya Linn Roots Halts Sodium Arsenite-Induced Renal Inflammation through Inhibiting Adenosine Deaminase, 8-Hydroxy-2′-Deoxyguanosine, C-Reactive Protein and Inducible Nitric Oxide Synthase Activity. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2017. [DOI: 10.1515/sjecr-2017-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objectives: Inflammation plays a crucial role in many of the metabolic abnormalities. The prototypic marker of inflammation is C-reactive protein (CRP), Nitric Oxide (NO), inducible nitric oxide synthase (iNOS) and their inhibition is considered a promising strategy to combat inflammation. Here, we report the anti-inflammatory mechanism of Carica papaya root aqueous extract in sodium arsenic-induced renal dysfunction.
Methodology: Thirty-five rats were used for the experiments. Griess assay was used to evaluate the inhibitory effect of Carica papaya roots aqueous extract on the overproduction of nitric oxide (NO). ELISA was used to determine the level of pro-inflammatory markers including c-reactive protein (CRP). ELISA was used to analyze 8-OHdG. The inhibitory effect on the enzymatic activity of inducible nitric oxide synthase (iNOS), adenosine deaminase (ADA), malondialdehyde (MDA) was tested by enzyme activity assay kits.
Results:
Carica papaya roots aqueous extract suppressed sodium arsenite-stimulated NO production and proinflammatory secretion, such as CRP. Carica papaya roots aqueous extract significantly (p < 0.05) decrease the activities of iNOS, 8-OHdG, ADA and MDA.
Conclusion: These results indicated that potent inhibition on CRP, NO, iNOS, ADA, 8-OHdG might constitute the anti-inflammatory mechanism of Carica papaya roots aqueous extract.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Biochemical Toxicology and Diabetes Research Group, Department of Biochemistry , Afe Babalola University , Ado-Ekiti , Ekiti State, Nigeria
| | - Adebola Busola Ojo
- Department of Medical Biochemistry , Afe Babalola University , Ado-Ekiti , Ekiti State, Nigeria
| | - Olukemi Adetutu Osukoya
- Phytomedicine, Biochemical Toxicology and Diabetes Research Group, Department of Biochemistry , Afe Babalola University , Ado-Ekiti , Ekiti State, Nigeria
| | - Basiru Olaitan Ajiboye
- Phytomedicine, Biochemical Toxicology and Diabetes Research Group, Department of Biochemistry , Afe Babalola University , Ado-Ekiti , Ekiti State, Nigeria
| |
Collapse
|
15
|
Precancerous ACF induction affects their regional distribution forsaking oxidative stress implication in 1,2-dimethylhydrazine-induced colon carcinogenesis model. Inflammopharmacology 2017; 26:457-468. [DOI: 10.1007/s10787-017-0377-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/12/2017] [Indexed: 01/28/2023]
|
16
|
Russo GL, Tedesco I, Spagnuolo C, Russo M. Antioxidant polyphenols in cancer treatment: Friend, foe or foil? Semin Cancer Biol 2017; 46:1-13. [PMID: 28511887 DOI: 10.1016/j.semcancer.2017.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/18/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
Cancer prevention can be probably obtained with easier, faster and less financial strains by pursuing educational programs aimed to induce changes in lifestyle, starting from dietary habits. In the past decades, observational and case-control studies tried to establish a functional relationship between cancer mortality and morbidity and diet. The field becomes even more intricate when scientists investigated which dietary components are responsible for the putative, protective effects of fruits and vegetables against cancer. A relevant part of the literature focused on the positive role of "antioxidant" compounds in foods, including polyphenols. The present review critically evaluate clinical and pre-clinical studies based on polyphenol administration, which contributed to support the concept, deeply rooted in the general population, that antioxidant polyphenols can fight cancer. The controversial and contradictory issues related to the pros and cons on the use of polyphenols against cancer reflect the confounding assumption that cancer treatment and cancer prevention may overlap. We conclude that a clear cut must be done between these two concepts and that the experimental approaches to investigate one or the other should be significantly different, starting from adequate and specifically selected cellular models.
Collapse
Affiliation(s)
- Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100, Avellino, Italy.
| | - Idolo Tedesco
- Institute of Food Sciences, National Research Council, 83100, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, 83100, Avellino, Italy
| | - Maria Russo
- Institute of Food Sciences, National Research Council, 83100, Avellino, Italy
| |
Collapse
|
17
|
Akinyemi AJ, Onyebueke N, Faboya OA, Onikanni SA, Fadaka A, Olayide I. Curcumin inhibits adenosine deaminase and arginase activities in cadmium-induced renal toxicity in rat kidney. J Food Drug Anal 2017; 25:438-446. [PMID: 28911688 PMCID: PMC9332529 DOI: 10.1016/j.jfda.2016.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
In this study, the effect of enzymes involved in degradation of renal adenosine and l-arginine was investigated in rats exposed to cadmium (Cd) and treated with curcumin, the principal active phytochemical in turmeric rhizome. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. The results of this study revealed that the activities of renal adenosine deaminase and arginase were significantly increased in Cd-treated rats when compared with the control (p < 0.05). However, co-treatment with curcumin inhibits the activities of these enzymes compared with Cd-treated rats. Furthermore, Cd intoxication increased the levels of some renal biomarkers (serum urea, creatinine, and electrolytes) and malondialdehyde level with a concomitant decrease in functional sulfhydryl group and nitric oxide (NO). However, co-treatment with curcumin at 12.5 mg/kg and 25 mg/kg, respectively, increases the nonenzymatic antioxidant status and NO in the kidney, with a concomitant decrease in the levels of malondialdehyde and renal biomarkers. Therefore, our results reinforce the importance of adenosine deaminase and arginase activities in Cd poisoning conditions and suggest some possible mechanisms of action by which curcumin prevent Cd-induced renal toxicity in rats.
Collapse
|
18
|
Bounaama A, Enayat S, Ceyhan MS, Moulahoum H, Djerdjouri B, Banerjee S. Ethanolic Extract of Bark fromSalix aegyptiacaAmeliorates 1,2-dimethylhydrazine-induced Colon Carcinogenesis in Mice by Reducing Oxidative Stress. Nutr Cancer 2016; 68:495-506. [DOI: 10.1080/01635581.2016.1152379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Correlation of TGF-β1 and oxidative stress in the blood of patients with melanoma: a clue to understanding melanoma progression? Tumour Biol 2016; 37:10753-61. [PMID: 26873487 DOI: 10.1007/s13277-016-4967-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/02/2016] [Indexed: 12/15/2022] Open
Abstract
TGF-β1 and oxidative stress are involved in cancer progression, but in melanoma, their role is still controversial. Our aim was to correlate plasma TGF-β1 levels and systemic oxidative stress biomarkers in patients with melanoma, with or without disease metastasis, to understand their participation in melanoma progression. Thirty patients were recruited for melanoma surveillance, together with 30 healthy volunteers. Patients were divided into two groups: Non-metastasis, comprising patients with tumor removal and no metastatic episode for 3 years; and Metastasis, comprising patients with a metastatic episode. The plasmatic cytokines TGF-β1, IL-1 β, and TNF-α were analyzed by ELISA. For oxidative stress, the following assays were performed: malondialdehyde (MDA), advanced oxidation protein products (AOPP) levels, total radical-trapping antioxidant parameter (TRAP) and thiol in plasma, and lipid peroxidation, SOD and catalase activity and GSH in erythrocytes. Patients with a metastatic episode had less circulating TGF-β1 and increased TRAP, thiol, AOPP and lipid peroxidation levels. MDA was increased in both melanoma groups, while catalase, GSH, and IL-1β was decreased in Non-metastasis patients. Significant negative correlations were observed between TGF-β1 levels and systemic MDA, and TGF-β1 levels and systemic AOPP, while a positive correlation was observed between TGF-β1 levels and erythrocyte GSH. Lower levels of TGF-β1 were related to increased oxidative stress in Metastasis patients, reinforcing new evidence that in melanoma TGF-β1 acts as a tumor suppressor, inhibiting tumor relapse. These findings provide new knowledge concerning this cancer pathophysiology, extending the possibilities of investigating new therapies based on this evidence.
Collapse
|
20
|
Kilari BP, Kotakadi VS, Penchalaneni J. Anti-proliferative and Apoptotic Effects of Basella rubra (L.) Against 1, 2-Dimethyl Hydrazine-induced Colon Carcinogenesis in Rats. Asian Pac J Cancer Prev 2016; 17:73-80. [DOI: 10.7314/apjcp.2016.17.1.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
FRAJACOMO FERNANDOTADEU, KANNEN VINICIUS, DEMINICE RAFAEL, GERALDINO THAISHERRERO, PEREIRA-DA-SILVA GABRIELA, UYEMURA SERGIOAKIRA, JORDÃO-JR ALCEUAFONSO, GARCIA SERGIOBRITTO. Aerobic Training Activates Interleukin 10 for Colon Anticarcinogenic Effects. Med Sci Sports Exerc 2015; 47:1806-13. [DOI: 10.1249/mss.0000000000000623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Rouhollahi E, Moghadamtousi SZ, Al-Henhena N, Kunasegaran T, Hasanpourghadi M, Looi CY, Abd Malek SN, Awang K, Abdulla MA, Mohamed Z. The chemopreventive potential of Curcuma purpurascens rhizome in reducing azoxymethane-induced aberrant crypt foci in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3911-22. [PMID: 26251570 PMCID: PMC4524378 DOI: 10.2147/dddt.s84560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Curcuma purpurascens BI. rhizome, a member of the Zingiberaceae family, is a popular spice in Indonesia that is traditionally used in assorted remedies. Dichloromethane extract of C. purpurascens BI. rhizome (DECPR) has previously been shown to have an apoptosis-inducing effect on colon cancer cells. In the present study, we examined the potential of DECPR to prevent colon cancer development in rats treated with azoxymethane (AOM) (15 mg/kg) by determining the percentage inhibition in incidence of aberrant crypt foci (ACF). Starting from the day immediately after AOM treatment, three groups of rats were orally administered once a day for 2 months either 10% Tween 20 (5 mL/kg, cancer control), DECPR (250 mg/kg, low dose), or DECPR (500 mg/kg, high dose). Meanwhile, the control group was intraperitoneally injected with 5-fluorouracil (35 mg/kg) for 5 consecutive days. After euthanizing the rats, the number of ACF was enumerated in colon tissues. Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA) protein expressions were examined using immunohistochemical and Western blot analyses. Antioxidant enzymatic activity was measured in colon tissue homogenates and associated with malondialdehyde level. The percentage inhibition of ACF was 56.04% and 68.68% in the low- and high-dose DECPR-treated groups, respectively. The ACF inhibition in the treatment control group was 74.17%. Results revealed that DECPR exposure at both doses significantly decreased AOM-induced ACF formation, which was accompanied by reduced expression of PCNA. Upregulation of Bax and downregulation of Bcl-2 suggested the involvement of apoptosis in the chemopreventive effect of DECPR. In addition, the oxidative stress resulting from AOM treatment was significantly attenuated after administration of DECPR, which was shown by the elevated antioxidant enzymatic activity and reduced malondialdehyde level. Taken together, the present data clearly indicate that DECPR significantly inhibits ACF formation in AOM-treated rats and may offer protection against colon cancer development.
Collapse
Affiliation(s)
- Elham Rouhollahi
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Nawal Al-Henhena
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Thubasni Kunasegaran
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohadeseh Hasanpourghadi
- Cell Biology and Drug Discovery Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Cell Biology and Drug Discovery Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Zahurin Mohamed
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Shiri S, Alizadeh AM, Baradaran B, Farhanghi B, Shanehbandi D, Khodayari S, Khodayari H, Tavassoli A. Dendrosomal Curcumin Suppresses Metastatic Breast Cancer in Mice by Changing M1/M2 Macrophage Balance in the Tumor Microenvironment. Asian Pac J Cancer Prev 2015; 16:3917-22. [DOI: 10.7314/apjcp.2015.16.9.3917] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Cho JA, Park E. Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion. Nutr Res Pract 2015; 9:117-22. [PMID: 25861416 PMCID: PMC4388941 DOI: 10.4162/nrp.2015.9.2.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/OBJECTIVES Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.
Collapse
Affiliation(s)
- Jin Ah Cho
- Division of GI Cell Biology, Boston Children's Hospital, USA
| | - Eunmi Park
- Department of Food and Nutrition, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
| |
Collapse
|