1
|
Moyano P, Flores A, San Juan J, García J, Anadón MJ, Plaza JC, Naval MV, Fernández MDLC, Guerra-Menéndez L, Del Pino J. Imidacloprid unique and repeated treatment produces cholinergic transmission disruption and apoptotic cell death in SN56 cells. Food Chem Toxicol 2024; 193:114988. [PMID: 39251036 DOI: 10.1016/j.fct.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Imidacloprid (IMI), the most widely used worldwide neonicotinoid biocide, produces cognitive disorders after repeated and single treatment. However, little was studied about the possible mechanisms that produce this effect. Cholinergic neurotransmission regulates cognitive function. Most cholinergic neuronal bodies are present in the basal forebrain (BF), regulating memory and learning process, and their dysfunction or loss produces cognition decline. BF SN56 cholinergic wild-type or acetylcholinesterase (AChE), β-amyloid-precursor-protein (βAPP), Tau, glycogen-synthase-kinase-3-beta (GSK3β), beta-site-amyloid-precursor-protein-cleaving enzyme 1 (BACE1), and/or nuclear-factor-erythroid-2-related-factor-2 (NRF2) silenced cells were treated for 1 and 14 days with IMI (1 μM-800 μM) with or without recombinant heat-shock-protein-70 (rHSP70), recombinant proteasome 20S (rP20S) and with or without N-acetyl-cysteine (NAC) to determine the possible mechanisms that mediate this effect. IMI treatment for 1 and 14 days altered cholinergic transmission through AChE inhibition, and triggered cell death partially through oxidative stress generation, AChE-S overexpression, HSP70 downregulation, P20S inhibition, and Aβ and Tau peptides accumulation. IMI produced oxidative stress through reactive oxygen species production and antioxidant NRF2 pathway downregulation, and induced Aβ and Tau accumulation through BACE1, GSK3β, HSP70, and P20S dysfunction. These results may assist in determining the mechanisms that produce cognitive dysfunction observed following IMI exposure and provide new therapeutic tools.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier San Juan
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Anadón
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Jose Carlos Plaza
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Maria Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María de la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucía Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Ramirez-Cando LJ, Rodríguez-Cazar LG, Acosta-Tobar LA, Ballaz SJ. Molecular docking analysis of chlorpyrifos at the human α7-nAChR and its potential relationship with neurocytoxicity in SH-SY5Y cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:277-284. [PMID: 38600794 DOI: 10.1080/03601234.2024.2340929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The organophosphate insecticide chlorpyrifos (CPF), an acetylcholinesterase inhibitor, has raised serious concerns about human safety. Apart from inducing synaptic acetylcholine accumulation, CPF could also act at nicotinic acetylcholine receptors, like the α7-isoform (α7-nAChR), which could potentially be harmful to developing brains. Our aims were to use molecular docking to assess the binding interactions between CPF and α7-nAChR through, to test the neurocytotoxic and oxidative effects of very low concentrations of CPF on SH-SY5Y cells, and to hypothesize about the potential mediation of α7-nAChR. Docking analysis showed a significant binding affinity of CPH for the E fragment of the α7-nAChR (ΔGibbs: -5.63 to -6.85 Kcal/mol). According to the MTT- and Trypan Blue-based viability assays, commercial CPF showed concentration- and time-dependent neurotoxic effects at a concentration range (2.5-20 µM), ten-folds lower than those reported to have crucial effects for sheer CPF. A rise of the production of radical oxygen species (ROS) was seen at even lower concentrations (1-2.5 µM) of CPF after 24h. Notably, our docking analysis supports the antagonistic actions of CPF on α7-nAChR that were recently published. In conclusion, while α7-nAChR is responsible for neuronal survival and neurodevelopmental processes, its activity may also mediate the neurotoxicity of CPF.
Collapse
Affiliation(s)
- Lenin J Ramirez-Cando
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador
| | | | - Luis A Acosta-Tobar
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador
| | | |
Collapse
|
3
|
Li W, Zhao Z, Yang W, Su Q, Na C, Zhang X, Zhao R, Song H. Immobilization of bovine hemoglobin on Au nanoparticles/MoS 2 nanosheets - Chitosan modified screen-printed electrode as chlorpyrifos biosensor. Enzyme Microb Technol 2021; 154:109959. [PMID: 34891104 DOI: 10.1016/j.enzmictec.2021.109959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/13/2023]
Abstract
In this paper a quick and disposable electrochemical biosensor based on bovine hemoglobin (BHb) is proposed for the determination of chlorpyrifos (CP). The bioelectrode (denoted as AuNPs/MoS2-CS/BHb/SPE) has been designed by immobilizing BHb on the screen printed electrode (SPE) surface modified by gold nanoparticles (AuNPs) and Molybdenum disulfide (MoS2) nanosheets - chitosan (CS) mixture (MoS2-CS). Field emission scanning electron microscopy (FESEM) and electrochemical characterization demonstrate the successful grafting of AuNPs/MoS2-CS/BHb/SPE. Detailed electrochemical impedance spectroscopy (EIS) analysis and cyclic voltammetry (CV) tests show that the proposed bioelectrode exhibits decent electrochemical properties, such as well conductivity and large specific surface area. In-depth electrochemical analysis reveals the redox reaction occurring on the surface of the bioelectrode and the mechanism that CP binds with BHb forming the thin film to inhibit the peak current. The proposed biosensor exhibits sensitive and stable responses for electrochemical assay of CP ranging from 0.004 μM to 28.52 μM, with a limit of detection (LOD) as 5.6 nM. The electrochemical biosensor passes the repeatability, reproducibility, stability and anti-interference ability test experiments with good performance. The biosensor also shows its credibility for detecting CP in real vegetable samples (Cabbage and Leek) with recovery (%) ranging from 87% to 109%. The proposed biosensor is of great potential application values for detecting CP and the study is of great reference value for the research and development of biosensors for quantitative detection of organophosphate pesticides (OPs).
Collapse
Affiliation(s)
- Wei Li
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zuyi Zhao
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wei Yang
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qin Su
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Chong Na
- Shanxi Wanjiazhai Water Resources Co., Ltd., Xinzhou, Shanxi 030012, China
| | - Xueli Zhang
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Rui Zhao
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Haiyan Song
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
4
|
Kropf E, Fahnestock M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells 2021; 10:cells10081983. [PMID: 34440751 PMCID: PMC8392605 DOI: 10.3390/cells10081983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.
Collapse
Affiliation(s)
- Erika Kropf
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
5
|
Sankorrakul K, Qian L, Thangnipon W, Coulson EJ. Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem 2021; 158:1292-1306. [PMID: 34109634 DOI: 10.1111/jnc.15451] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Cholinergic basal forebrain (cBF) neurons are particularly vulnerable to degeneration following trauma and in neurodegenerative conditions. One reason for this is their characteristic expression of the p75 neurotrophin receptor (p75NTR ), which is up-regulated and mediates neuronal death in a range of neurological and neurodegenerative conditions, including dementia, stroke and ischaemia. The signalling pathway by which p75NTR signals cell death is incompletely characterised, but typically involves activation by neurotrophic ligands and signalling through c-Jun kinase, resulting in caspase activation via mitochondrial apoptotic signalling pathways. Less well appreciated is the link between conditions of oxidative stress and p75NTR death signalling. Here, we review the literature describing what is currently known regarding p75NTR death signalling in environments of oxidative stress and hypoxia to highlight the overlap in signalling pathways and the implications for p75NTR signalling in cBF neurons. We propose that there is a causal relationship and define key questions to test this assertion.
Collapse
Affiliation(s)
- Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Lei Qian
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| |
Collapse
|
6
|
Alwazzan A, Mehboob R, Gilani SA, Hassan A, Perveen S, Tanvir I, Waseem H, Ehsan K, Ahmad FJ, Akram J. Immunohistochemical Expression of the Alpha Nicotinic Acetylcholine Receptor 7 in the Human Normal, Diabetic, and Preeclamptic Placenta and Products of Conception. Front Physiol 2020; 11:607239. [PMID: 33324243 PMCID: PMC7724587 DOI: 10.3389/fphys.2020.607239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Preeclampsia (PE) and gestational diabetes (GD) are complications in advanced pregnancy while miscarriage for early pregnancy. However, the etiological factors are not well understood. Smoking has been associated with these complications as well as the sudden intrauterine deaths, sudden infant death, miscarriages, and still births. However, the immunolocalization of alpha 7 nicotine acetylcholine receptor (α7-nAChR) is not studied. Materials and Methods: α7-nAChR subunit expression was evaluated in 10 paraffin-embedded placental tissues after delivery and 10 tissue samples of products of conception during first trimester by immunohistochemistry. Among the placental tissues, two samples were normal placental tissue, four from PE mother, and four from GD mother. The expression of α7-nAChR was compared between the two groups in general and within the subgroups of placenta as well. Protein expression was evaluated using the nuclear labeling index (%) of villi with positive cells stained, positive cells in the decidua, and intensity of staining in the outer villous trophoblast layer. Results: The expression of α7-nAChR protein was high in all the cases of placenta and products of conception (POCs). α7-nAChR expression showed no notable differences among different cases of miscarriages irrespective of the mother's age and gestational age at which the event occurred. However, there were some changes among the normal, PE, and GD placental groups in the linings of the blood vessels. Changes were restricted to the villi (as opposed to the decidua) lining cells, both cytotrophoblast and syncytiotrophoblast, and were specific to the α7 subunit. PE blood vessel lining was thicker and showed more expression of this receptor in endothelial cells and myofibroblasts in PE and GD groups. In POCs, the strong expression was observed in the decidua myocytes of maternal blood vessels and in syncytiotrophoblast and cytotrophoblast of chronic villi. Conclusion: Nicotine acetyl choline receptors are found to be expressed highly in the placental tissues and in products of conception. They may be associated with the sudden perinatal deaths and miscarriages or complications of pregnancy.
Collapse
Affiliation(s)
- Ahmad Alwazzan
- Division of Gynecology Oncology, Faculty of Medicine, King Abdulaziz University,, Jeddah, Saudi Arabia
| | - Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
- SISSA, International School for Advanced Studies, Trieste, Italy
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Amber Hassan
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Shahida Perveen
- Department of Pathology, Continental Medical College Lahore, Lahore, Pakistan
| | - Imrana Tanvir
- Department of Pathology, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Humaira Waseem
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | | | - Fridoon Jawad Ahmad
- Physiology and Cell Biology Department, University of Health Sciences Lahore, Lahore, Pakistan
- Institute of Regenerative Medicine, University of Health Sciences Lahore, Lahore, Pakistan
| | - Javed Akram
- Physiology and Cell Biology Department, University of Health Sciences Lahore, Lahore, Pakistan
| |
Collapse
|
7
|
Cao X, Yan C, Yang X, Zhou L, Zou W, Xiu G. Photolysis-Induced Neurotoxicity Enhancement of Chlorpyrifos in Aquatic System: A Case Investigation on Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:461-470. [PMID: 31868356 DOI: 10.1021/acs.jafc.9b05908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contamination of the environment by toxic pesticides has become of great concern in agricultural countries. Chlorpyrifos (CP) is among the pesticides most commonly detected in the environment owing to its wide agricultural applications. The aim of this study was to compare potential changes in the toxicity of CP after irradiation. To this end, photolysis of CP was conducted under simulated sunlight, and neurotoxicity assessment was carried out at CP of 20 and 50 μg L-1 and its corresponding irradiated mixture solutions which contain a mixture of identified intermediates using the nematode, Caenorhabditis elegans as a model organism. Photodegradation of 20 μg L-1 CP for 1 h produced no obvious reduction of physiological damage, and more serious effects on animal movement were detected after exposure of the animals to a solution of 50 μg L-1 for 1 h irradiation compared with unirradiated solution. GABAergic and cholinergic neurons were selectively vulnerable to CP exposure, and maximal neuropathological alterations were observed after 1 h irradiation of the CP solutions in coherence with the behavioral impairment. The generation of photoproducts was considered to be responsible for the enhanced disturbance on those biological processes. This work provided useful information on the toxicological assessments of chemicals that were produced during the environmental transformation of pesticides.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Chenzhi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Xuerui Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , PR China
| | - Wenjun Zou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , PR China
| |
Collapse
|
8
|
Moyano P, Garcia JM, Frejo MT, Lobo M, Garcia J, Del Pino J. Proteasome 20S and Rab5 Alteration after 24 h and 14 Days Chlorpyrifos Exposure Lead to β-Amyloid and Tau Protein Level Increases and SN56 Neuronal Cell Death. Chem Res Toxicol 2019; 32:1920-1924. [PMID: 31580065 DOI: 10.1021/acs.chemrestox.9b00216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The biocide chlorpyrifos (CPF) was shown to produce cognition impairment following single and long-term exposure. The complete mechanisms that lead to the CPF induced cognitive disorders remain to be discovered. Aβ and tau proteins production was induced in basal forebrain SN56 cholinergic cells, by CPF, through proteasome 20S inhibition and Rab5 overexpression, leading to cell death both after acute and repeated administration, which was related with cognitive disorders induction. The results obtained in our study procure novel information related to the mechanisms involved in CPF neurodegeneration, which could be responsible for cognitive dysfunction and may lead to a promising alternative treatment of these effects.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School , Complutense University of Madrid , 28040 Madrid , Spain
| | - José Manuel Garcia
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School , Complutense University of Madrid , 28040 Madrid , Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School , Complutense University of Madrid , 28040 Madrid , Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Veterinary School , Complutense University of Madrid , 28040 Madrid , Spain
| | - Jimena Garcia
- Department of Pharmacology, Health Sciences School , Alfonso X University , 28691 Madrid , Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School , Complutense University of Madrid , 28040 Madrid , Spain
| |
Collapse
|
9
|
Yao Y, Wang G, Chu G, An X, Guo Y, Sun X. The development of a novel biosensor based on gold nanocages/graphene oxide–chitosan modified acetylcholinesterase for organophosphorus pesticide detection. NEW J CHEM 2019. [DOI: 10.1039/c9nj02556a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel acetylcholinesterase biosensor, namely, gold nanocages/graphene oxide–chitosan nanocomposite modified screen-printed carbon electrode was prepared for chlorpyrifos detection.
Collapse
Affiliation(s)
- Yao Yao
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Guangxian Wang
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Guanglei Chu
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xingshuang An
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Yemin Guo
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xia Sun
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| |
Collapse
|
10
|
Uniyal S, Sharma RK. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosens Bioelectron 2018; 116:37-50. [DOI: 10.1016/j.bios.2018.05.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023]
|
11
|
Moyano P, Frejo MT, Anadon MJ, García JM, Díaz MJ, Lobo M, Sola E, García J, Del Pino J. SN56 neuronal cell death after 24 h and 14 days chlorpyrifos exposure through glutamate transmission dysfunction, increase of GSK-3β enzyme, β-amyloid and tau protein levels. Toxicology 2018; 402-403:17-27. [DOI: 10.1016/j.tox.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
|
12
|
Cadmium induced ROS alters M1 and M3 receptors, leading to SN56 cholinergic neuronal loss, through AChE variants disruption. Toxicology 2018; 394:54-62. [DOI: 10.1016/j.tox.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
13
|
Bardóczi Z, Pál B, Kőszeghy Á, Wilheim T, Watanabe M, Záborszky L, Liposits Z, Kalló I. Glycinergic Input to the Mouse Basal Forebrain Cholinergic Neurons. J Neurosci 2017; 37:9534-9549. [PMID: 28874448 PMCID: PMC5618268 DOI: 10.1523/jneurosci.3348-16.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/21/2022] Open
Abstract
The basal forebrain (BF) receives afferents from brainstem ascending pathways, which has been implicated first by Moruzzi and Magoun (1949) to induce forebrain activation and cortical arousal/waking behavior; however, it is very little known about how brainstem inhibitory inputs affect cholinergic functions. In the current study, glycine, a major inhibitory neurotransmitter of brainstem neurons, and gliotransmitter of local glial cells, was tested for potential interaction with BF cholinergic (BFC) neurons in male mice. In the BF, glycine receptor α subunit-immunoreactive (IR) sites were localized in choline acetyltransferase (ChAT)-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs (sIPSCs; 0.81 ± 0.25 × 10-1 Hz) recorded in whole-cell conditions. Potential neuronal as well as glial sources of glycine were indicated in the extracellular space of cholinergic neurons by glycine transporter type 1 (GLYT1)- and GLYT2-IR processes found in apposition to ChAT-IR cells. Ultrastructural analyses identified synapses of GLYT2-positive axon terminals on ChAT-IR neurons, as well as GLYT1-positive astroglial processes, which were localized in the vicinity of synapses of ChAT-IR neurons. The brainstem raphe magnus was determined to be a major source of glycinergic axons traced retrogradely from the BF. Our results indicate a direct effect of glycine on BFC neurons. Furthermore, the presence of high levels of plasma membrane glycine transporters in the vicinity of cholinergic neurons suggests a tight control of extracellular glycine in the BF.SIGNIFICANCE STATEMENT Basal forebrain cholinergic (BFC) neurons receive various activating inputs from specific brainstem areas and channel this information to the cortex via multiple projections. So far, very little is known about inhibitory brainstem afferents to the BF. The current study established glycine as a major regulator of BFC neurons by (1) identifying glycinergic neurons in the brainstem projecting to the BF, (2) showing glycine receptor α subunit-immunoreactive (IR) sites in choline acetyltransferase (ChAT)-IR neurons, (3) demonstrating glycine transporter type 2 (GLYT2)-positive axon terminals synapsing on ChAT-IR neurons, and (4) localizing GLYT1-positive astroglial processes in the vicinity of synapses of ChAT-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs recorded in whole-cell conditions.
Collapse
Affiliation(s)
- Zsuzsanna Bardóczi
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
- Semmelweis University, School of PH.D. Studies, 1085, Budapest, Hungary
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Áron Kőszeghy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Tamás Wilheim
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - László Záborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, Newark, New Jersey 07102, and
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary,
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| |
Collapse
|