1
|
Keuter L, Fortmann M, Behrens M, Humpf HU. Alterations in the proteomes of HepG2 and IHKE cells inflicted by six selected mycotoxins. Arch Toxicol 2025; 99:701-715. [PMID: 39638853 PMCID: PMC11775057 DOI: 10.1007/s00204-024-03905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Toxic fungal secondary metabolites, referred to as mycotoxins, emerge in moldy food and feed and constitute a potent but often underestimated health threat for humans and animals. They are structurally diverse and can cause diseases after dietary intake even in low concentrations. To elucidate cellular responses and identify cellular targets of mycotoxins, a bottom-up proteomics approach was used. We investigated the effects of the mycotoxins aflatoxin B1, ochratoxin A, citrinin, deoxynivalenol, nivalenol and penitrem A on the human hepatoblastoma cell line HepG2 and of ochratoxin A and citrinin on the human kidney epithelial cell line IHKE. Incubations were carried out at sub-cytotoxic concentrations to monitor molecular effects before acute cell death mechanisms predominate. Through these experiments, we were able to detect specific cellular responses that point towards the mycotoxins' mode of action. Besides very well-described mechanisms like the ribotoxicity of the trichothecenes, we observed not yet described effects on different cellular mechanisms. For instance, trichothecenes lowered the apolipoprotein abundance and aflatoxin B1 affected proteins related to inflammation, ribogenesis and mitosis. Ochratoxin A and citrinin upregulated the minichromosomal maintenance complex and nucleotide synthesis in HepG2 and downregulated histones in IHKE. Penitrem A reduced enzyme levels of the sterol biosynthesis. These results will aid in the elucidation of the toxicodynamic properties of this highly relevant class of toxins.
Collapse
Affiliation(s)
- Lucas Keuter
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Marco Fortmann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany.
| |
Collapse
|
2
|
Hopke A, Viens AL, Alexander NJ, Mun SJ, Mansour MK, Irimia D. Spleen tyrosine kinase inhibitors disrupt human neutrophil swarming and antifungal functions. Microbiol Spectr 2025; 13:e0254921. [PMID: 39601545 PMCID: PMC11705959 DOI: 10.1128/spectrum.02549-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Neutrophils communicate with one another and amplify their destructive power through swarming, a collective process that synchronizes the activities of multiple neutrophils against one target. The sequence of activities contributing to swarming against clusters of fungi has been recently uncovered. However, the molecular signals controlling the neutrophils' activities during the swarming process are just emerging. Here, we report that spleen tyrosine kinase (SYK) inhibitors severely impair neutrophil swarming responses, resulting in the complete loss of fungal restriction. These findings are enabled by a microscale platform to probe the biology of human neutrophils swarming against uniformly sized clusters of growing Candida albicans, a representative opportunistic fungal pathogen. We take advantage of the ability to monitor large arrays of swarms and quantify the effect of multiple chemical inhibitors on different phases of human neutrophil swarming. We show that inhibitors that interfere with PI3Ky signaling disrupt the regulation of the initiation of swarming, while the activation of JNK signaling is essential for the activation of biochemical antifungal functions. Furthermore, we reveal that granulocyte colony-stimulating factors (GCSF and GM-CSF) can partially rescue the antifungal functions of neutrophils exposed to SYK inhibitors. These findings advance our understanding of neutrophil swarming biology in humans and lay the foundation for novel therapeutics that may restore neutrophil function during immunosuppression. IMPORTANCE Neutrophils can amplify their destructive power through swarming, a crucial process against large targets that individual neutrophils cannot destroy. However, the molecular mechanisms controlling this process are just emerging. Here, we leveraged microscale tools to probe the biology of swarming against fungi. We used multiple chemical inhibitors and mapped SYK, PI3Ky, and JNK signaling roles during human neutrophil swarming against fungal clusters of Candida albicans. We also found that treating human neutrophils with GCSF and GM-CSF rescues some neutrophil antifungal function during SYK inhibition. These findings advance our understanding of swarming biology in humans while laying the foundation for developing therapeutics that enhance neutrophil function during immunosuppression.
Collapse
Affiliation(s)
- Alex Hopke
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Adam L. Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J. Alexander
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Seok Joon Mun
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Jegadheeshwari S, Santhi JJ, Velayutham M, Issac PK, Kesavan M. DbGTi protein attenuates chromium (VI)-induced oxidative stress via activation of the Nrf2/HO-1 signalling pathway in zebrafish (Danio rerio) larval model. Int J Biol Macromol 2024; 280:136099. [PMID: 39343269 DOI: 10.1016/j.ijbiomac.2024.136099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Hexavalent chromium (Cr (VI)) contamination poses a significant threat to environmental and human health due to its ability to induce oxidative stress. Conventional strategies to counter Cr (VI)-induced oxidative stress, like antioxidants and chelating agents, face efficacy limitations and adverse effects. The present study is intended to counteract the limitations of conventional strategies by introducing a trypsin inhibitor isolated from Dioscorea bulbifera L. tubers, known as DbGTi protein, against Cr (VI)-induced developmental toxicity and oxidative stress. Through a comprehensive array of biochemical assays, behavioural tests, and gene expression analyses, this study interprets the underlying mechanisms of the DbGTi protein. Results demonstrated that the DbGTi protein effectively restored antioxidant defense systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GTPx), thereby mitigating cellular damage, reducing cell death, and enhancing neuro-biomarkers. qRT-PCR analysis of mRNA expression profiling revealed the upregulation of genes associated with antioxidant defense (sod, cat, gpx) and defense pathway (nrf2, hmox-1a), further highlighting the protective effects of DbGTi protein against Cr (VI)-induced oxidative stress.
Collapse
Affiliation(s)
- S Jegadheeshwari
- Department of Biotechnology, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Jenila John Santhi
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, Tamil Nadu, India
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, Tamil Nadu, India
| | - M Kesavan
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Bridgeman L, Juan C, Juan-García A, Berrada H. Individual and combined effect of acrylamide, fumitremorgin C and penitrem A on human neuroblastoma SH-SY5Y cells. Food Chem Toxicol 2023; 182:114114. [PMID: 37879530 DOI: 10.1016/j.fct.2023.114114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Acrylamide (AA) is a chemical compound that can be formed in certain foods during high-temperature cooking processes such as frying, baking, and roasting. Exposure to AA has been linked to several neurological effects, including peripheral neuropathy, ataxia, and impaired cognitive function. Penitrem A (PEN A) and Fumitremorgin C (FTC) are toxic mycotoxins produced by certain species of fungi, such as Penicillium Crustosum, Aspergillus Fumigatus and Neosartorya Fischeri. Both mycotoxins are commonly found in contaminated foods and animal feeds and have been linked to several adverse health effects in humans and animals, including the ability to disrupt normal functioning of the nervous system, tremors, seizures, muscle spasms, and convulsions. AA, PEN A, and FTC are all chemical contaminants. Understanding their toxicity and how they may affect human cells can help food safety authorities to establish safe exposure levels for these compounds through food and develop strategies to reduce their presence. The aim of this study was to explore the combined in vitro toxicological effects of AA, PEN A and FTC in SH-SY5Y cells. For this purpose, cells were treated with AA, FTC, and PEN A as an individual and combined treatment. The types of interactions were assessed by the isobologram analysis. The cell cycle was performed by flow cytometry. Additive effect in binary and tertiary combinations was the major effect according to isobologram graphics. Our results demonstrate that PEN A possessed the highest potential in disturbing cell cycle progression by disrupting cell density in G0/G1 phase.
Collapse
Affiliation(s)
- Luna Bridgeman
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Houda Berrada
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
5
|
Gerdemann A, Behrens M, Esselen M, Humpf HU. Metabolic profiling as a powerful tool for the analysis of cellular alterations caused by 20 mycotoxins in HepG2 cells. Arch Toxicol 2022; 96:2983-2998. [PMID: 35932296 PMCID: PMC9525358 DOI: 10.1007/s00204-022-03348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Mycotoxins are secondary fungal metabolites which exhibit toxic effects in low concentrations. Several mycotoxins are described as carcinogenic or immunosuppressive, but their underlying modes of action especially on molecular level have not yet been entirely elucidated. Metabolic profiling as part of the omics methods is a powerful tool to study the toxicity and the mode of action of xenobiotics. The use of hydrophilic interaction chromatography in combination with targeted mass spectrometric detection enables the selective and sensitive analysis of more than 100 polar and ionic metabolites and allows the evaluation of metabolic alterations caused by xenobiotics such as mycotoxins. For metabolic profiling, the hepato-cellular carcinoma cell line HepG2 was treated with sub-cytotoxic concentrations of 20 mycotoxins. Moniliformin and citrinin significantly affected target elements of the citric acid cycle, but also influenced glycolytic pathways and energy metabolism. Penitrem A, zearalenone, and T2 toxin mainly interfered with the urea cycle and the amino acid homeostasis. The formation of reactive oxygen species seemed to be influenced by T2 toxin and gliotoxin. Glycolysis was altered by ochratoxin A and DNA synthesis was affected by several mycotoxins. The observed effects were not limited to these metabolic reactions as the metabolic pathways are closely interrelated. In general, metabolic profiling proved to be a highly sensitive tool for hazard identification in comparison to single-target cytotoxicity assays as metabolic alterations were already observed at sub-toxic concentrations. Metabolic profiling could therefore be a powerful tool for the overall evaluation of the toxic properties of xenobiotics.
Collapse
Affiliation(s)
- Andrea Gerdemann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany.
| |
Collapse
|
6
|
Berntsen HF, Bodin J, Øvrevik J, Berntsen CF, Østby GC, Brinchmann BC, Ropstad E, Myhre O. A human relevant mixture of persistent organic pollutants induces reactive oxygen species formation in isolated human leucocytes: Involvement of the β2-adrenergic receptor. ENVIRONMENT INTERNATIONAL 2022; 158:106900. [PMID: 34607039 DOI: 10.1016/j.envint.2021.106900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Exposure to chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) persistent organic pollutants (POPs) is associated with immunotoxicity and other adverse effects in humans and animals. Previous studies on POPs have mainly focused on single chemicals, while studies on complex mixtures are limited. Using DCF and luminol assays we examined effects on ROS generation in isolated human neutrophils, monocytes and lymphocytes, after in vitro exposure to a total mixture and sub-mixtures of 29 persistent compounds (Cl, Br, and PFAA). The mixtures were based on compounds prominent in blood, breast milk, and/or food. All mixture combinations induced ROS production in one or several of the cell models, and in some cases even at concentrations corresponding to human blood levels (compound range 1 pM - 16 nM). Whilst some interactions were detected (assessed using a mixed linear model), halogenated subgroups mainly acted additively. Mechanistic studies in neutrophils at 500× human levels (0.5 nM - 8 µM) indicated similar mechanisms of action for the Cl, PFAA, the combined PFAA + Cl and total (PFAA + Br + Cl) mixtures, and ROS responses appeared to involve β2-adrenergic receptor (β2AR) and Ca2+ signalling, as well as activation of NADPH oxidases. In line with this, the total mixture also increased cyclic AMP at levels comparable with the non-selective βAR agonist, isoproterenol. Although the detailed mechanisms involved in these responses remain to be elucidated, our data show that POP mixtures at concentrations found in human blood, may trigger stress responses in circulating immune cells. Mixtures of POPs, further seemed to interfere with adrenergic pathways, indicating a novel role of βARs in POP-induced effects.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, NO-1432 Ås, Norway; National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway.
| | - Johanna Bodin
- Department of Methods Development and Analytics, Norwegian Institute of Public Health, N-0456 Oslo, Norway.
| | - Johan Øvrevik
- Department of Environmental Health, Norwegian Institute of Public Health, N-0456 Oslo, Norway; Department of Biosciences, University of Oslo, Norway.
| | - Christopher Friis Berntsen
- Department of Internal Medicine, Sykehuset Innlandet Hospital Trust, Gjøvik, Norway; Department of Internal Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway.
| | - Gunn C Østby
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, NO-1432 Ås, Norway.
| | - Bendik C Brinchmann
- National Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304 Oslo, Norway; Department of Environmental Health, Norwegian Institute of Public Health, N-0456 Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, NO-1432 Ås, Norway.
| | - Oddvar Myhre
- Department of Environmental Health, Norwegian Institute of Public Health, N-0456 Oslo, Norway.
| |
Collapse
|
7
|
Nguyen VTT, König S, Eggert S, Endres K, Kins S. The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research. Biol Chem 2021; 403:3-26. [PMID: 34449171 DOI: 10.1515/hsz-2021-0214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Mycotoxins are fungal metabolites that can cause various diseases in humans and animals. The adverse health effects of mycotoxins such as liver failure, immune deficiency, and cancer are well-described. However, growing evidence suggests an additional link between these fungal metabolites and neurodegenerative diseases. Despite the wealth of these initial reports, reliable conclusions are still constrained by limited access to human patients and availability of suitable cell or animal model systems. This review summarizes knowledge on mycotoxins associated with neurodegenerative diseases and the assumed underlying pathophysiological mechanisms. The limitations of the common in vivo and in vitro experiments to identify the role of mycotoxins in neurotoxicity and thereby in neurodegenerative diseases are elucidated and possible future perspectives to further evolve this research field are presented.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Svenja König
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Qusa MH, Abdelwahed KS, Meyer SA, El Sayed KA. Olive Oil Lignan (+)-Acetoxypinoresinol Peripheral Motor and Neuronal Protection against the Tremorgenic Mycotoxin Penitrem A Toxicity via STAT1 Pathway. ACS Chem Neurosci 2020; 11:3575-3589. [PMID: 32991800 DOI: 10.1021/acschemneuro.0c00458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Penitrem A, PA, is an indole diterpene alkaloid produced by several fungal species. PA acts as a selective Ca2+-dependent K-channels (Maxi-K, BK) antagonist in brain, causing motor system dysfunctions including tremors and seizures. However, its molecular mechanism at the peripheral nervous system (PNS) is still ambiguous. The Mediterranean diet key ingredient extra-virgin olive oil (EVOO) provides a variety of minor bioactive phenolics. (+)-Pinoresinol (PN) and (+)-1-acetoxypinoresinol (AC) are naturally occurring lignans in EVOO with diverse biological activities. AC exclusively occurs in EVOO, unlike PN, which occurs in several plants. Results suggest that PA neurotoxicity molecular mechanism is mediated, in part, through distortion of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. PA selectively activated the STAT1 pathway, independently of the interferon-γ (IFN-γ) pathway, in vitro in Schwann cells and in vivo in Swiss albino mice sciatic nerves. Preliminary in vitro screening of an EVOO phenolic compounds library for the ability to reverse PA toxicity on Schwann cells revealed PN and AC as potential hits. In a Swiss albino mouse model, AC significantly minimized the fatality after intraperitoneal administration of PA fatal doses and normalized most biochemical factors by modulating the STAT1 expression. The olive lignan AC is a novel lead that can prevent the neurotoxicity of food-contaminating tremorgenic indole alkaloid mycotoxins.
Collapse
Affiliation(s)
- Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Sharon A. Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| |
Collapse
|
9
|
In Vitro Toxicokinetics and Phase I Biotransformation of the Mycotoxin Penitrem A in Dogs. Toxins (Basel) 2020; 12:toxins12050293. [PMID: 32375391 PMCID: PMC7290812 DOI: 10.3390/toxins12050293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/02/2022] Open
Abstract
The tremorgenic mycotoxin penitrem A is produced by Penicillium species as a secondary metabolite on moldy food and feed. Dogs are sometimes exposed to penitrem A by consumption of spoiled food waste or fallen fruit. The lipophilic toxin crosses the blood-brain barrier and targets neuroreceptors and neurotransmitter release mechanisms in the central and peripheral nervous systems. Typical symptoms of penitrem A intoxication are periodical or continuous tremors, which can be passing, persistent or lethal, depending on the absorbed dose. There is presently no information on the biotransformation and toxicokinetics of penitrem A in dogs. The aim of the present study was therefore to identify potential metabolites of the toxin by performing in vitro biotransformation assays in dog liver microsomes. Analyses by liquid chromatography coupled to high-resolution mass spectrometry led to the provisional identification of eleven penitrem A phase I metabolites, which were tentatively characterized as various oxidation products. Furthermore, elimination parameters determined in in vitro assays run under linear kinetics were used for in vitro-to-in vivo extrapolation of the toxicokinetic data, predicting a maximal bioavailability of more than 50%. The metabolite profile detected in the in vitro assays was similar to that observed in the plasma of an intoxicated dog, confirming the predictive capability of the in vitro approach.
Collapse
|
10
|
Hussien R, Ahmed S, Awad H, El-Setouhy M, El-Shinawi M, Hirshon JM. Identification of 'Voodoo': an emerging substance of abuse in Egypt. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY 2020; 102:104-116. [PMID: 35002018 PMCID: PMC8734563 DOI: 10.1080/03067319.2020.1715384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/27/2019] [Indexed: 06/14/2023]
Abstract
BACKGROUND 'Voodoo' is a new substance of abuse that recently spread among youth in Egypt. It has numerous potentially dangerous effects on humans. However, to date the composition of the main constituents of this compound is unknown. PURPOSE We sought to identify the active components of this unknown substance"voodoo". METHODS Three samples were collected and analysed by high-performance liquid chromatography with photodiode array detector (HPLC-PAD), gas chromatography/mass spectrometry (GC/MS), and ultra-performance liquid chromatography/mass spectrometry (UPLC-MS/MS) using targeted multiple reaction monitoring (MRM). RESULTS HPLC-PAD analysis showed that samples 1 and 2 had some common major peaks, the same retention time, and similar spectra, whereas sample 3 showed different peaks. GC/MS analysis revealed the presence of various putatively identified bioactive compounds, including quinazolines, morphinan alkaloid, cannabinoids, penitrem A, and the well-known synthetic cannabinoid FUB-AMB (methyl(2S)-2-{[1-[(4-fluorophenyl)methyl]indazole-3-carbonyl]amino}-3 methylbutanoate). UPLC-MS/MS analysis revealed the presence of common compounds such as tetrahydrocannabinol (THC), amphetamine, 3,4-methylenedioxyamphetamine, tramadol, and oxazepam. CONCLUSION We concluded that Voodoo is a mixture of substances of abuse at varying concentrations.
Collapse
Affiliation(s)
- Rania Hussien
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sarah Ahmed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanem Awad
- Regulatory Toxicology Lab, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Maged El-Setouhy
- Department of Family and Community Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shinawi
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Jon Mark Hirshon
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Combs MD, Hamlin A, Quinn JC. A single exposure to the tremorgenic mycotoxin lolitrem B inhibits voluntary motor activity and spatial orientation but not spatial learning or memory in mice. Toxicon 2019; 168:58-66. [PMID: 31254599 DOI: 10.1016/j.toxicon.2019.06.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
The indole diterpenoid toxin lolitrem B is a tremorgenic agent found in the common grass species, perennial ryegrass (Lolium perenne). The toxin is produced by a symbiotic fungus Epichloë festucae (var. lolii) and ingestion of infested grass with sufficient toxin levels causes a movement disorder in grazing herbivores known as 'ryegrass staggers'. Beside ataxia, lolitrem B intoxicated animals frequently show indicators of cognitive dysfunction or exhibition of erratic and unpredictable behaviours during handling. Evidence from field cases in livestock and controlled feeding studies in horses have indicated that intoxication with lolitrem B may affect higher cortical or subcortical functioning. In order to define the role of lolitrem B in voluntary motor control, spatial learning and memory under controlled conditions, mice were exposed to a known dose of purified lolitrem B toxin and tremor, coordination, voluntary motor activity and spatial learning and memory assessed. Motor activity, coordination and spatial memory were compared to tremor intensity using a novel quantitative piezo-electronic tremor analysis. Peak tremor was observed as frequencies between 15 and 25Hz compared to normal movement at approximately 1.4-10Hz. A single exposure to a known tremorgenic dose of lolitrem B (2 mg/kg IP) induced measureable tremor for up to 72 h in some animals. Initially, intoxication with lolitrem B significantly decreased voluntary movement. By 25 h post exposure a return to normal voluntary movement was observed in this group, despite continuing evidence of tremor. This effect was not observed in animals exposed to the short-acting tremorgenic toxin paxilline. Lolitrem B intoxicated mice demonstrated a random search pattern and delayed latency to escape a 3 h post intoxication, however by 27 h post exposure latency to escape matched controls and mice had returned to normal searching behavior indicating normal spatial learning and memory. Together these data indicate that the tremor exhibited by lolitrem B intoxicated mice does not directly impair spatial learning and memory but that exposure does reduce voluntary motor activity in intoxicated animals. Management of acutely affected livestock suffering toxicosis should be considered in the context of their ability to spatially orientate with severe toxicity.
Collapse
Affiliation(s)
- M D Combs
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2560, Australia; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, 2560, Australia
| | - A Hamlin
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - J C Quinn
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2560, Australia; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, 2560, Australia.
| |
Collapse
|
12
|
Kozák L, Szilágyi Z, Tóth L, Pócsi I, Molnár I. Tremorgenic and neurotoxic paspaline-derived indole-diterpenes: biosynthetic diversity, threats and applications. Appl Microbiol Biotechnol 2019; 103:1599-1616. [PMID: 30613899 DOI: 10.1007/s00253-018-09594-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Indole-diterpenes (IDTs) such as the aflatrems, janthitrems, lolitrems, paspalitrems, penitrems, shearinines, sulpinines, and terpendoles are biogenetically related but structurally varied tremorgenic and neurotoxic mycotoxins produced by fungi. All these metabolites derive from the biosynthetic intermediate paspaline, a frequently occurring IDT on its own right. In this comprehensive review, we highlight the similarities and differences of the IDT biosynthetic pathways that lead to the generation of the main paspaline-derived IDT subgroups. We survey the taxonomic distribution and the regulation of IDT production in various fungi and compare the organization of the known IDT biosynthetic gene clusters. A detailed assessment of the highly diverse biological activities of these mycotoxins leads us to emphasize the significant losses that paspaline-derived IDTs cause in agriculture, and compels us to warn about the various hazards they represent towards human and livestock health. Conversely, we also describe the potential utility of these versatile molecules as lead compounds for pharmaceutical drug discovery, and examine the prospects for their industrial scale manufacture in genetically manipulated IDT producers or domesticated host microorganisms in synthetic biological production systems.
Collapse
Affiliation(s)
- László Kozák
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Teva Pharmaceutical Works Ltd., Debrecen, Hungary
| | | | - László Tóth
- Teva Pharmaceutical Works Ltd., Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| | - István Molnár
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, University of Arizona, Tucson, USA.
| |
Collapse
|