1
|
Jiang T, Zhu F, Gao X, Wu X, Zhu W, Guo C. Naringenin loaded fucoidan/polyvinylpyrrolidone nanoparticles protect against folic acid induced acute kidney injury in vitro and in vivo. Colloids Surf B Biointerfaces 2024; 245:114343. [PMID: 39486374 DOI: 10.1016/j.colsurfb.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Acute kidney injury (AKI) is a common clinical problem with no effective treatment. Excessive folic acid (FA) induced kidney tubular injury is characterized by oxidative stress and inflammation, and is a common model of AKI. The excellent pharmacological activity of naringenin (NAR) makes it a potential agent for treating AKI, but its poor solubility limits its application. This study prepared NAR loaded nanoparticles (FU/PVP-NAR) using fucoidan (FU) and polyvinylpyrrolidone (PVP) as carriers, with a particle size of 23.96 ± 2.77 nm. In vitro studies showed that FU/PVP-NAR inhibited excessive FA induced proliferation inhibition, accumulation of reactive oxygen species (ROS), and disruption of mitochondrial membrane potential (MMP) of HK-2 cells. Further confirmed that FU/PVP-NAR inhibited FA induced DNA damage and Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. In vivo studies showed that excessive FA induced AKI features in mice, such as elevated serum creatinine (SCr) and blood urea nitrogen (BUN) levels, accompanied by pathological damage to kidney tissues. The above AKI characteristics induced by FA were alleviated by FU/PVP-NAR. FU/PVP-NAR also inhibited the decrease in antioxidant enzyme levels in kidney tissues induced by FA. Furthermore, in vivo mechanism studies indicated that FU/PVP-NAR inhibited the release of inflammatory factors by inhibiting DNA damage-cGAS-STING pathway. In summary, this study provided the possibility for FU/PVP-NAR as a potential candidate drug for treating FA induced AKI.
Collapse
Affiliation(s)
- Tao Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feikai Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Huang HJ, Chou CL, Sandar TT, Liu WC, Yang HC, Lin YC, Zheng CM, Chiu HW. Currently Used Methods to Evaluate the Efficacy of Therapeutic Drugs and Kidney Safety. Biomolecules 2023; 13:1581. [PMID: 38002263 PMCID: PMC10669823 DOI: 10.3390/biom13111581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Kidney diseases with kidney failure or damage, such as chronic kidney disease (CKD) and acute kidney injury (AKI), are common clinical problems worldwide and have rapidly increased in prevalence, affecting millions of people in recent decades. A series of novel diagnostic or predictive biomarkers have been discovered over the past decade, enhancing the investigation of renal dysfunction in preclinical studies and clinical risk assessment for humans. Since multiple causes lead to renal failure, animal studies have been extensively used to identify specific disease biomarkers for understanding the potential targets and nephropathy events in therapeutic insights into disease progression. Mice are the most commonly used model to investigate the mechanism of human nephropathy, and the current alternative methods, including in vitro and in silico models, can offer quicker, cheaper, and more effective methods to avoid or reduce the unethical procedures of animal usage. This review provides modern approaches, including animal and nonanimal assays, that can be applied to study chronic nonclinical safety. These specific situations could be utilized in nonclinical or clinical drug development to provide information on kidney disease.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (C.-L.C.)
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (C.-L.C.)
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City 320, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Tin Tin Sandar
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
| | - Hsiu-Chien Yang
- Division of Nephrology, Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yen-Chung Lin
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (C.-L.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (C.-L.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
3
|
Zaghlool SS, Abdelaal N, El-Shoura EAM, Mahmoud NI, Ahmed YM. Restoring glomerular filtration rate by sulforaphane modulates ERK1/2/JNK/p38MAPK, IRF3/iNOS, Nrf2/HO-1 signaling pathways against folic acid-induced acute renal injury in rats. Int Immunopharmacol 2023; 123:110777. [PMID: 37567014 DOI: 10.1016/j.intimp.2023.110777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Folic acid (FA)-induced acute renal injury (AKI) is a commonly and highly reproducible model used to study AKI. The current study aims to evaluate the possible protective effects of sulforaphane (SFN) against FA-induced renal damage and explore the underlying molecular mechanism. METHODS The animals were divided into four groups (6 rats/group) as follows: normal group (received vehicle, p.o.), FA group (received 250 mg/kg, i.p.), SFN low dose group (received 15 mg/kg, p.o. plus FA 250 mg/kg, i.p.), SFN high dose group (30 mg/kg, p.o. plus FA 250 mg/kg, i.p.). At the end of the experiment, serum samples and kidney tissues were obtained to perform biochemical, molecular, and histopathological investigations. RESULTS The present study showed that FA-caused AKI was confirmed by a significant elevation of kidney function biomarkers serum levels accompanied by an observation of histopathologic changes. Interestingly, SFN-administration significantly improved kidney function, reduced oxidative stress markers; MDA, NADPH oxidase, MPO, iNOS with up-regulation of GSH, GCLM, GPX4, SOD, NQO1, HO-1 and Nrf2 levels. SFN also downregulated proinflammatory markers. The results also demonstrated the anti-apoptotic effect of SFN through its ability to increase the antiapoptotic Bcl-2 protein and to decrease caspase-3. Moreover, SFN significantly decreased the relative expression of JNK, ERK-1/2, IRF3, and p38MAPK as compared to the FA-nephrotoxic group. CONCLUSION The present study revealed that SFN possess an antioxidant, anti-inflammatory and antiapoptotic activity by modulating caspase-3, Bcl-2, ERK1/2, JNK, GCLM, NQO1, GPX4, Nrf2, HO-1 and P38 signaling pathways in a dose dependent manner which provides a potential therapeutic strategy for preventing FA-induced AKI.
Collapse
Affiliation(s)
- Sameh S Zaghlool
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, 11571, Egypt.
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA.
| | - Ehab A M El-Shoura
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt.
| | - Nesreen I Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Yasmin M Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| |
Collapse
|
4
|
Yan H, Huang X, Xu J, Zhang Y, Chen J, Xu Z, Li H, Wang Z, Yang X, Yang B, He Q, Luo P. Chloroquine Intervenes Nephrotoxicity of Nilotinib through Deubiquitinase USP13-Mediated Stabilization of Bcl-XL. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302002. [PMID: 37452432 PMCID: PMC10502815 DOI: 10.1002/advs.202302002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Nephrotoxicity has become prominent due to the increase in the clinical use of nilotinib, a second-generation BCR-ABL1 inhibitor in the first-line treatment of Philadelphia chromosome-positive chronic myeloid leukemia. To date, the mechanism of nilotinib nephrotoxicity is still unknown, leading to a lack of clinical intervention strategies. Here, it is found that nilotinib could induce glomerular atrophy, renal tubular degeneration, and kidney fibrosis in an animal model. Mechanistically, nilotinib induces intrinsic apoptosis by specifically reducing the level of BCL2 like 1 (Bcl-XL) in both vascular endothelial cells and renal tubular epithelial cells, as well as in vivo. It is confirmed that chloroquine (CQ) intervenes with nilotinib-induced apoptosis and improves mitochondrial integrity, reactive oxygen species accumulation, and DNA damage by reversing the decreased Bcl-XL. The intervention effect is dependent on the alleviation of the nilotinib-induced reduction in ubiquitin specific peptidase 13 (USP13) and does not rely on autophagy inhibition. Additionally, it is found that USP13 abrogates cell apoptosis by preventing excessive ubiquitin-proteasome degradation of Bcl-XL. In conclusion, the research reveals the molecular mechanism of nilotinib's nephrotoxicity, highlighting USP13 as an important regulator of Bcl-XL stability in determining cell fate, and provides CQ analogs as a clinical intervention strategy for nilotinib's nephrotoxicity.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Ying Zhang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zeng Wang
- Department of PharmacyZhejiang Cancer HospitalHangzhou310005China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Bo Yang
- Institute of Pharmacology & ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhou310018China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Department of CardiologySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| |
Collapse
|
5
|
Abdelrahman RS, Abdelsalam RA, Zaghloul MS. Beneficial effect of trimetazidine on folic acid-induced acute kidney injury in mice: Role of HIF-1α/HO-1. J Biochem Mol Toxicol 2022; 36:e23011. [PMID: 35191561 DOI: 10.1002/jbt.23011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/28/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
Acute kidney injury (AKI) is a complex syndrome associated with a decrease in renal function and a significant impact on patient outcomes. Injection of folic acid (FA) in mice is used for studying the pathogenesis of AKI. This study investigated the impact of trimetazidine (a metabolic modulator-antianginal drug; TMZ), against FA-induced AKI. AKI was induced by FA (250 mg/kg, ip) in mice. Two doses of TMZ were administered orally for 10 days. Administration of TMZ at a high dose (20 mg/kg) exhibited significant decreases in the renal somatic index (RSI), serum levels of lactate dehydrogenase (LDH), creatinine (Cr), blood urea nitrogen (1), and proteins level in urine. Moreover, TMZ significantly increased creatinine clearance (CCr), serum albumin, urine creatinine, and urine urea levels. This improvement in markers of kidney damage was associated with marked renal antioxidant effects (↓NO and ↓lipid peroxidation, normalized reduced glutathione (GSH) level and superoxide dismutase (SOD) activity, and increased HIF-1α/HO-1 level). Furthermore, TMZ significantly decreased FA-induced expression of MPO and inflammatory cytokine IL-18, TNF-α, and NF-κB p65 subunit. Renal apoptosis, along with apoptotic markers, were enhanced by FA injection and suppressed by TMZ administration (↓Caspase-3, ↓Bax, and ↑Bcl2 expression). Finally, TMZ amended FA-induced histopathological changes in kidneys. By mitigating functional alteration, oxidative stress, and preventing the development of inflammatory and apoptosis signals, TMZ provides dose-dependent defense against FA-induced AKI mainly via stimulation of hypoxia-inducible factor-1 alpha (HIF-1α)/heme oxygenase-1 (HO-1) pathway.
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ramy A Abdelsalam
- Department of Pathology, Faculty of medicine, Mansoura University, Mansoura, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Protocatechuic acid protects against thioacetamide-induced chronic liver injury and encephalopathy in mice via modulating mTOR, p53 and the IL-6/ IL-17/ IL-23 immunoinflammatory pathway. Toxicol Appl Pharmacol 2022; 440:115931. [PMID: 35202709 DOI: 10.1016/j.taap.2022.115931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Protocatechuic acid (PCA), a natural phenolic acid, is known for antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic activities. However, the protective mechanisms of PCA on thioacetamide (TAA)-induced liver/brain injury are not well addressed. Chronic liver injury was induced in mice by intraperitoneal injection of TAA (200 mg/kg, 3 times/week) for 8 weeks. Simultaneously, PCA (100, 150 mg/kg/day, p.o.) was given daily from the 4th week. Protocatechuic acid ameliorated liver and brain damage indicated by the decrease in serum activities of aminotransferases, gamma-glutamyl transferase, alkaline phosphatase, lactate dehydrogenase, levels of bilirubin, and ammonia concomitant with restoration of normal albumin levels. Additionally, PCA treatment ameliorated oxidative stress in liver and brain, confirmed by the decrease in malondialdehyde and nitric oxide levels and the increase in antioxidant activities. Moreover, PCA showed anti-inflammatory actions through downregulation of TNF-α expression in the liver and IL-6/IL-17/IL-23 levels in the brain, which is confirmed by the decrease in CD4+ T brain cell numbers. Most importantly, PCA treatment showed a significant decrease in mTOR level and number of LC3 positive cells in both liver and brain tissues. Consequently, PCA could inhibit mTOR-induced apoptosis, as it showed anti-apoptotic actions through downregulation of caspase-3 expression in liver and p53 expression in liver and brain. Furthermore, liver and brain tissues of treated mice showed restoration of normal histology. It can be concluded that, several mechanisms, including: antioxidant, anti-inflammatory, anti-autophagic and anti-apoptotic activities can be implicated in the hepato- and neuroprotective potentials of PCA.
Collapse
|
7
|
Yan L. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021; 4:329-342. [PMID: 34977484 PMCID: PMC8690981 DOI: 10.1002/ame2.12194] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
Collapse
Affiliation(s)
- Liang‐Jun Yan
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
8
|
Sun Y, Zhang X, Shen X, Wang S, Wang Q, Yang X. Computational and experimental characterization of isomers of escin-induced renal cytotoxicity by inhibiting heat shock proteins. Eur J Pharmacol 2021; 908:174372. [PMID: 34324856 DOI: 10.1016/j.ejphar.2021.174372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Escin is a natural mixture of triterpene saponins, exhibits anti-oedematous properties and promotes venous drainage by oral administration or injection. Upon clinical application of escin, adverse kidney reactions have been reported and the nephrotoxic mechanism responsible for this reaction remains elusive. In the present study, four isomeric escins (β-form: escin Ia and escin Ib; α-form: isoescin Ia and isoescin Ib) were found severely decreasing the cell viability of human kidney (HK-2) cells. A decline in HK-2 cell viability caused by sodium aescinate (a mixture of four isomers) was reduced after β-glucuronidase hydrolysis. In addition, sodium aescinate concentration-dependently inhibited the expression level of heat shock proteins (HSPs) in the Madin-Darby Canine Kidney (MDCK) cells. Moreover, with molecular docking and molecular dynamics simulation, these four isomeric escins could directly bind to the ATP-binding domain of HSP70 and HSP90, thus competitively inhibiting the function of HSPs. Escin Ia is bound to HSPs with the lowest binding free energy, which is consistent with the observation that escin Ia most severely decreases HK-2 cell viability. Thus, we demonstrate a heretofore unknown molecular mechanism of escin-induced renal cytotoxicity as well as identify HSPs as potential targets for the renal cytotoxic effect of escin.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Xiaofan Shen
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety; Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine (TCM) for Compatibility Toxicology, Beijing, 100191, China.
| | - Xiuwei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
9
|
Zhang X, Liu X, Zhang Y, Yang A, Zhang Y, Tong Z, Wang Y, Qiu Y. Wan-Nian-Qing, a Herbal Composite Prescription, Suppresses the Progression of Liver Cancer in Mice by Regulating Immune Response. Front Oncol 2021; 11:696282. [PMID: 34307161 PMCID: PMC8297951 DOI: 10.3389/fonc.2021.696282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 01/10/2023] Open
Abstract
The Wan-Nian-Qing prescription (WNQP), an herbal composite containing Ornithogalum caudatum, has been used in China for several years for cancer treatment. However, the mechanism of its pharmacological action against liver cancer is not clear. This study aimed to investigate the role of WNQP in inhibiting tumor growth in hepatocellular carcinoma model mice and determine its mechanism of action. We established HepG2- and SMMC-7721-xenografted tumor models in nude mice and BALB/c mice. The mice were administered WNQP for 2 weeks. The bodyweight of each mouse was monitored every day, and the tumor size was measured using vernier caliper before each round of WNQP administration. After the last dose, mice were sacrificed. The tumors were removed, lysed, and subjected to proteome profiling, enzyme-linked immunosorbent assay, and western blotting. The liver, spleen, and kidney were collected for histopathological examination. The effects of WNQP against liver cancer were first systematically confirmed in HepG2- and SMMC-7721-xenografted nude mice and BALB/c mice models. WNQP inhibited tumor growth, but failed to affect bodyweight and organ structures (liver and spleen), confirming that it was safe to use in mice. In BALB/c mice, WNQP regulated immune function, inferred from the modulation of immune-related cytokines such as interleukins, interferon, tumor necrosis factors, and chemokines. Further results confirmed that this regulation occurred via the regulatory effects of WNQP on Nrf2 signaling. WNQP can inhibit the growth of HepG2- and SMMC-7721-xenografted tumors in nude mice and BALB/c mice. This effect manifests at least partially through immunomodulation mediated apoptosis.
Collapse
Affiliation(s)
- Xinrui Zhang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yue Zhang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Anhui Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhijun Tong
- R&D Department, Jilin Tianlitai Pharmaceutical Co. Ltd, Baishan, China
| | - Yingwu Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Elnfarawy AA, Nashy AE, Abozaid AM, Komber IF, Elweshahy RH, Abdelrahman RS. Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum Exp Toxicol 2021; 40:355-368. [PMID: 32840391 DOI: 10.1177/0960327120947453] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Liver fibrosis is associated with increased mortality and morbidity. However, there is not effective treatment so far. Vinpocetine (Vinpo) is a synthetic derivative of vinca alkaloid vincamine. Limited previous reports have shown some beneficial effects of Vinpo in different organ fibrosis, but the ability of Vinpo to inhibit liver fibrosis induced by thioacetamide (TAA) has not been reported, that is why we investigate the potential ability of this vinca alkaloid derivative to attenuate liver fibrosis. Hepatic fibrosis was induced in male Sprague Dawley rats by TAA (200 mg/kg; ip; 3 times/week) for 6 weeks. Daily treatments with Vinpo (10-20 mg/kg/day; orally) ameliorated TAA-induced hepatic oxidative stress and histopathological damage as indicated by a decrease in liver injury markers, LDH, hepatic MDA, and NOx levels, as well as increase anti-oxidative parameters. Besides, the anti-fibrotic efficacy of Vinpo was confirmed by decreasing hydroxyproline, and α-SMA. Also, the anti-inflammatory effect of Vinpo was explored by decreasing IL-6 and TNF-α levels. Our novel findings were that Vinpo decreased VEGF/Ki-67 expression in the liver confirming its effect on angiogenesis and proliferation. These findings reveal the anti-fibrotic effect of Vinpo against TAA-induced liver fibrosis in rats, and suggest the modulation of oxidative stress, inflammation, angiogenesis and proliferation as mechanistic cassette underlines this effect.
Collapse
Affiliation(s)
| | - Asmaa E Nashy
- 158395Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Alaa M Abozaid
- 158395Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, Saudi Arabia
- Department of Pharmacology and Toxicology, 158395Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
11
|
Ezzat DM, Soliman AM, El-Kashef DH. Nicorandil mitigates folic acid-induced nephrotoxicity in mice: Role of iNOS and eNOS. J Biochem Mol Toxicol 2021; 35:e22692. [PMID: 33404076 DOI: 10.1002/jbt.22692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Accepted: 12/17/2020] [Indexed: 01/16/2023]
Abstract
Folic acid (FA)-induced acute kidney injury (AKI) is a commonly used model in experimental animals for studying renal injury. This study aimed to investigate the probable protecting impact of nicorandil against FA-induced renal dysfunction. A mouse model was executed by a single injection of FA (250 mg/kg). Nicorandil was orally administrated in two doses (50 and 100 mg/kg) for 10 days. Nicorandil repressed the progression of FA-induced AKI as evidenced by the improvement of histopathological alterations and the substantial decrease of serum levels of creatinine, urea, blood urea nitrogen, malondialdehyde (MDA), and urinary protein levels. Moreover, nicorandil resulted in a profound reduction in oxidative stress as manifested by decreased MDA and increased reduced glutathione and superoxide dismutase in renal tissue. Notably, nicorandil suppressed FA-induced inflammation; it reduced renal levels of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, nicorandil decreased renal levels of nitric oxide, inducible nitric oxide synthase, and increased endothelial nitric oxide synthase. Lastly, nicorandil efficiently decreased expression of the proapoptotic protein (Bax) and caspase 3. Nicorandil confers dose-dependent protection against FA-induced AKI by alleviating oxidative stress, inflammation besides modulating nitric oxide synthase and reducing apoptosis.
Collapse
Affiliation(s)
- Dalia M Ezzat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Asmaa M Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Habib SA, Abdelrahman RS, Abdel Rahim M, Suddek GM. Anti-apoptotic effect of vinpocetine on cisplatin-induced hepatotoxicity in mice: The role of Annexin-V, Caspase-3, and Bax. J Biochem Mol Toxicol 2020; 34:e22555. [PMID: 32578916 DOI: 10.1002/jbt.22555] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Hepatic damage is one of the most common complications related to cisplatin (Cis) use. Recently, liver protection lines are being discovered to avoid hepatic cell death as a result of oxidative, inflammatory, and apoptotic disturbance. Limited data reported the hepatoprotective effect of vinpocetine (Vin) in acute liver injury models. This study was designed to determine the potential protective effect of Vin (10-30 mg/kg, orally) against Cis-induced liver injury (10 mg/kg, IP) in mice. Vin administration for 1 week before Cis injection until the end of the experiment. On the 6th day after Cis injection, mice were anesthetized, blood and tissue samples were collected. Hepatic function, histological changes, oxidative stress, inflammation, and apoptotic markers were investigated. Vin administration ameliorated liver injury as indicated by decreased liver injury parameters; serum aminotransferases, ALK-P, GGT, and bilirubin, restored the anti-oxidant status by decrease MDA and NOx , and increased GSH and SOD, inhibited inflammation (IL-6, TNF-α, NFκB-p65, and iNOS) and apoptosis (Annexin-V, Bax, and Caspase-3) parameters. Vin confers dose-dependent protection against Cis-induced liver injury. The hepatoprotective effect of Vin involved anti-oxidative, anti-inflammatory, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Sally A Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, Saudi Arabia
| | - Mona Abdel Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
El-Kashef DH, Abdelrahman RS. Montelukast ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting TNF-α/JNK signaling pathway. Toxicol Appl Pharmacol 2020; 393:114931. [PMID: 32109511 DOI: 10.1016/j.taap.2020.114931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Concanavalin A (ConA) is a well-established model to induce autoimmune hepatitis (AIH) in mice which mimics pathological alterations that occur in human. The pathogenesis of ConA-induced AIH involves many signaling pathways. Montelukast is a leukotriene receptor antagonist that is mainly used in the management of asthma. The antioxidant, anti-inflammatory and anti-apoptotic effects of montelukast have been reported in previous studies. Lately, montelukast has been documented to confer protection against various inflammatory diseases. Up to date, no study has explored the effect of montelukast on AIH induced by ConA. AIM AND METHOD This study aims to detect the protective effects of montelukast (10 mg/kg) on ConA (20 mg/kg)- induced AIH in mice and to demonstrate its hepatoprotective mechanisms. Hepatic function, histological changes, oxidative stress, inflammation, autophagy, and apoptotic markers were investigated. RESULTS Hepatic function and histological data revealed that treatment with montelukast significantly attenuated ConA-induced hepatic damage. Montelukast significantly reduced JNK level and NFκB p65 expression, and inhibited proinflammatory cytokines (TNF-α and IL-6) as well as oxidative stress (MDA, NO, and GSH). Moreover, inflammatory cells (CD4+ infiltration and the levels of apoptotic markers (Bax and caspase-3) besides autophagy biomarkers (Beclin1 and LC3) were reduced. CONCLUSION Our results suggest that montelukast could be a potential therapeutic drug against the ConA-induced AIH through its anti-oxidant, anti-inflammatory, anti- autophagy as well as anti-apoptotic properties.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|