1
|
Zheng J, Yang X, Zhang C, Zhang W, Hu Y, Zeng L, Liu L, Li G. Icariin reduces cadmium-induced renal injury in rats. Food Chem Toxicol 2024; 193:114964. [PMID: 39197519 DOI: 10.1016/j.fct.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Icariin (ICA), an active ingredient found in Epimedium, possesses antioxidant and anti-inflammatory properties and has garnered widespread attention in recent years. This study investigated the protective effects of ICA against cadmium (Cd)-induced kidney injury in rats. Healthy male specific pathogen-free Sprague-Dawley rats were randomly divided into a control group, Cd group, a low-dose ICA group, a middle-dose ICA group, and a high-dose ICA group using a random number table. Tissue and blood samples were analyzed for renal function markers, histopathology, and gene expression. We found that ICA intervention ameliorates Cd-induced nephrotoxicity by enhancing glomerular filtration, mitigating renal tubular epithelial cell damage, reducing cellular degeneration and edema, and decreasing oxidative stress. ICA demonstrated anti-apoptotic activity through the regulation of pro- and anti-apoptotic gene transcription and by inhibiting apoptosis, thus protecting the kidneys. ICA also exhibited anti-inflammatory effects by reducing the transcription of Cd-induced pro-inflammatory genes, inhibiting nucleotide oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome formation, and preventing pyroptosis. ICA potentially regulated the Toll-like receptor 4/P2rx7/nuclear factor kappa B signaling pathway, which modulated the activation of the NLRP3 inflammasome and contributed to its anti-inflammatory action. ICA reduced Cd-induced renal injury in rats, likely through a mechanism involving antioxidant, anti-apoptotic, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jiewei Zheng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Xin Yang
- Wuzhong District Center for Disease Control and Prevention, Suzhou, 215100, Jiangsu, China
| | - Cong Zhang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Weipeng Zhang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Yue Hu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Lihai Zeng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Lili Liu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Guoliang Li
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China.
| |
Collapse
|
2
|
Wang CL, Li P, Liu B, Ma YQ, Feng JX, Xu YN, Liu L, Li ZH. Decrypting the skeletal toxicity of vertebrates caused by environmental pollutants from an evolutionary perspective: From fish to mammals. ENVIRONMENTAL RESEARCH 2024; 255:119173. [PMID: 38763280 DOI: 10.1016/j.envres.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.
Collapse
Affiliation(s)
- Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ya-Nan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
3
|
Zhou YS, Huang J, Cao WX, Yu AX, Li P, Liang JL, Leng XY, Jin J, Yu P, Liu J. The therapeutic mechanism of Compound Lurong Jiangu Capsule for the treatment of cadmium-induced osteoporosis: network pharmacology and experimental verification. Front Endocrinol (Lausanne) 2024; 15:1331488. [PMID: 39050570 PMCID: PMC11266182 DOI: 10.3389/fendo.2024.1331488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Among bone diseases, osteoporosis-like skeleton, such as trabecular thinning, fracture and so on, is the main pathological change of cadmium-induced osteoporosis(Cd-OP), accompanied by brittle bone and increased fracture rate. However, the mechanism underlying cadmium-induced osteoporosis has remained elusive. Compound Lurong Jiangu Capsule (CLJC) is an experienced formula for the treatment of bone diseases, which has the effect of tonifying kidney and strengthening bones, promoting blood circulation and relieving pain. Objective Network pharmacology and molecular docking technology combined with experiments were used to investigate the potential mechanism of CLJC in treating Cd-OP. Method The active compounds and corresponding targets of each herb in CLJC were searched in the TCMSP and BATMAN-TCM databases. The DisGeNet, OMIM, and GeneCards databases searched for Cd-OP targets. The relationship between both of them was visualized by establishing an herb-compound-target network using Cytoscape 3.9.1 software. Gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed after determining the intersection of the targets from CLJC and Cd-OP. What's more, molecular docking was performed to validate the results. All of them were aim to obtain hud signaling pathways for further study. Finally, BAX, BCL-2, and CASPASE-3 were screened and selected for further experiments, which included bone imaging and reconstruction analysis (Micro-CT), hematoxylin-eosin Staining (HE), and western blot (WB). Results 106 common targets from CLJC and Cd-OP targets were identified. KEGG pathway analysis suggested that multiple signaling pathways, such as the pathways in cancer, may play roles in treatment. Verification of the molecular docking was successful. Here we showed that Cd-OP displayed Tb.Th and Tb.N significantly reduced and even broke, irregular proliferation of bone cortex, uneven and loose trabecular bone arrangement, changed in apoptosis-related proteins, such as significant upregulation of CASPASE-3, BAX protein and significant downregulation of BCL-2 protein in vivo, while CLJC rescued these phenotypes. Conclusion This study revealed that CLJC can reduce the expression of apoptosis-related proteins, and multiple components and multiple targets inhibit Cd-OP through apoptosis signaling pathway.
Collapse
Affiliation(s)
- Ya-shuang Zhou
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jian Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin, China
| | - Wen-xuan Cao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ao-xue Yu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Pan Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-ling Liang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiang-yang Leng
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jian Jin
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Yu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jia Liu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Yalçın T, Kaya S. Therapeutic potential of the linalool against cadmium-induced testicular tissue damage. J Trace Elem Med Biol 2024; 84:127455. [PMID: 38657337 DOI: 10.1016/j.jtemb.2024.127455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Cadmium (Cd) is a heavy metal that has harmful effects and is one of the contaminants found in the environment. Cd exposure causes important pathophysiological processes, such as reproductive toxicity. Linalool (Lnl) is a monoterpene, a component of essential oils known to be produced synthetically. Additionally, Lnl has many important beneficial effects, such as anti-inflammatory and antioxidant effects. The objective of this study is to determine whether Lnl has a healing impact in opposition to testicular tissue damage due to Cd exposure. In the study, 28 male rats were divided at random into four equal groups (n = 7). No treatment was applied to the control group. CdCl2 was applied intraperitoneally to the Cd group at a dose of 3 mg/kg for the first 7 days of the trial. For the Cd + Lnl group, 3 mg/kg CdCl2 was applied intraperitoneally for the first 7 days of the trial, and 100 mg/kg/day Lnl was applied. Upon completion of all applications, the rats were sacrificed and blood samples and testicular tissue were taken. Cd exposure caused histopathological changes, oxidative stress, inflammation, and an increase in apoptotic cells in testicular tissue. However, Cd altered endocrine hormones in the hypothalamic-pituitary-gonad axis. However, Lnl application against Cd exposure was able to regulate the negativity caused by Cd in both testicular tissue and endocrine hormone levels. In conclusion, Lnl may be a potential therapeutic strategy against Cd-induced reproductive toxicity. We believe that Lnl has a high potential for further studies to determine its detailed mechanisms of action and cellular signaling pathways.
Collapse
Affiliation(s)
- Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey.
| | - Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey.
| |
Collapse
|
5
|
Salvatierra-Fréchou DM, Verstraeten SV. Tl(I) and Tl(III)-induce genotoxicity, reticulum stress and autophagy in PC12 Adh cells. Arch Toxicol 2024; 98:2085-2100. [PMID: 38619592 DOI: 10.1007/s00204-024-03752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
Thallium (Tl) and its two cationic species, Tl(I) and Tl(III), are toxic for most living beings. In this work, we investigated the effects of Tl (10-100 µM) on the viability and proliferation capacity of the adherent variant of PC12 cells (PC12 Adh cells). While both Tl(I) and Tl(III) halted cell proliferation from 24 h of incubation, their viability was ~ 90% even after 72 h of treatment. At 24 h, increased levels of γH2AX indicated the presence of DNA double-strand breaks. Simultaneously, increased expression of p53 and its phosphorylation at Ser15 were observed, which were associated with decreased levels of p-AKTSer473 and p-mTORSer2448. At 72 h, the presence of large cytoplasmic vacuoles together with increased autophagy predictor values suggested that Tl may induce autophagy in these cells. This hypothesis was corroborated by images obtained by transmission electron microscopy (TEM) and from the decreased expression at 72 h of incubation of SQSTM-1 and increased LC3β-II to LC3β-I ratio. TEM images also showed enlarged ER that, together with the increased expression of IRE1-α from 48 h of incubation, indicated that Tl-induced ER stress preceded autophagy. The inhibition of autophagy flux with chloroquine increased cell mortality, suggesting that autophagy played a cytoprotective role in Tl toxicity in these cells. Together, results indicate that Tl(I) or Tl(III) are genotoxic to PC12 Adh cells which respond to the cations inducing ER stress and cytoprotective autophagy.
Collapse
Affiliation(s)
- Damiana M Salvatierra-Fréchou
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Sandra V Verstraeten
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Alfwuaires MA, Famurewa AC, Algefare AI, Sedky A. Naringenin blocks hepatic cadmium accumulation and suppresses cadmium-induced hepatotoxicity via amelioration of oxidative inflammatory signaling and apoptosis in rats. Drug Chem Toxicol 2024; 47:436-444. [PMID: 37073537 DOI: 10.1080/01480545.2023.2196377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
Liver is one of the targets of cadmium (Cd) bioaccumulation for hepatic damage and pathologies via oxidative inflammation and apoptosis. The current study explored whether the citrus flavonoid naringenin (NAR) could prevent hepatic accumulation of Cd and Cd hepatotoxicity in a rat model. Rats in group 1 received normal saline; group 2 received NAR (50 mg/kg body weight); group 3 received CdCl2 (5 mg/kg body weight); group 4 received NAR + CdCl2, for four consecutive weeks. Assays related to markers of oxidative stress, inflammation, and apoptosis were carried out using liver homogenate. Blood and liver sample analyses revealed significant elevation of blood and hepatic Cd levels coupled with prominent increases in alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities, whereas the albumin and total protein levels were decreased considerably. Hepatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPx) activities diminished significantly compared to control followed by marked increases in malondialdehyde (MDA) levels, and dysregulation in caspase and cytokine (TNF-α, IL-6, IL-4, IL-10) levels. However, it was found that in the rats administered NAR + Cd, the levels of Cd, hepatic enzymes, MDA, TNF-α, IL-6, and caspases-3/-9 were prominently reduced compared to the Cd group. The hepatic SOD, CAT, GPx, IL-4, IL-10, albumin, and total protein were markedly elevated along with alleviated hepatic histopathological abrasions. Taken together therefore, NAR is a potential flavonoid for blocking hepatic Cd bioaccumulation and consequent inhibition of Cd-induced oxidative inflammation and apoptotic effects on the liver of rats.
Collapse
Affiliation(s)
- Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical, Sciences, College of Medical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Abdulmohsen I Algefare
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Cai L. Invited Perspective: New Insight into Cadmium-Related Osteoporosis Yields Hope for Prevention and Therapy. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:61301. [PMID: 38896781 PMCID: PMC11218703 DOI: 10.1289/ehp15263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Affiliation(s)
- Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville (U of L) School of Medicine, Louisville, Kentucky, USA
- Department of Radiation Oncology, U of L School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, U of L School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Cirovic A, Cirovic A, Yimthiang S, Vesey DA, Satarug S. Modulation of Adverse Health Effects of Environmental Cadmium Exposure by Zinc and Its Transporters. Biomolecules 2024; 14:650. [PMID: 38927054 PMCID: PMC11202194 DOI: 10.3390/biom14060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca). In cells, Zn is involved in the regulation of intermediary metabolism, gene expression, cell growth, differentiation, apoptosis, and antioxidant defense mechanisms. The cellular influx, efflux, subcellular compartmentalization, and trafficking of Zn are coordinated by transporter proteins, solute-linked carriers 30A and 39A (SLC30A and SLC39A), known as the ZnT and Zrt/Irt-like protein (ZIP). Because of its chemical similarity with Zn and Ca, Cd disrupts the physiological functions of both. The concurrent induction of a Zn efflux transporter ZnT1 (SLC30A1) and metallothionein by Cd disrupts the homeostasis and reduces the bioavailability of Zn. The present review highlights the increased mortality and the severity of various diseases among Cd-exposed persons and the roles of Zn and other transport proteins in the manifestation of Cd cytotoxicity. Special emphasis is given to Zn intake levels that may lower the risk of vision loss and bone fracture associated with Cd exposure. The difficult challenge of determining a permissible intake level of Cd is discussed in relation to the recommended dietary Zn intake levels.
Collapse
Affiliation(s)
- Ana Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Supabhorn Yimthiang
- Environmental Safety Technology and Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
| |
Collapse
|
9
|
Esfandyari F, Raeeszadeh M, Amiri AA. Comparative Evaluation of Levamisole and Broccoli in Mitigating Testicular Oxidative Stress and Apoptotic Alterations Caused by Cadmium and Lead Exposure in Rats. Biol Trace Elem Res 2024:10.1007/s12011-024-04241-1. [PMID: 38801623 DOI: 10.1007/s12011-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Considering the significance of heavy metals in infertility and their reduction through natural and synthetic compounds, a comparative study of broccoli and levamisole in cadmium and lead poisoning was conducted. Male Wistar rats (48 in total) were divided into 8 groups. Control, cadmium, lead, levamisole, and broccoli were administered individually to groups 1-5, while groups 6-8 received combinations. Various measurements were taken, including final weight, testicular weight, and the GSI coefficient. Sperm parameters, spermatogenesis cell count, oxidative stress biomarkers, and apoptosis indices were assessed using ELISA kits and methods in testicular tissue. The results indicated that the GSI coefficient was lowest in group 2 and highest in group 4, showing a significant difference (P < 0.001). Sperm concentration peaked in group 1 and broccoli-treated ones, while motility was highest in group 5. Testicular cell counts and Johnson score were highest in groups 1 and 2, and lowest in cadmium-exposed groups. These differences were statistically significant at P < 0.01. Enzyme activities related to oxidative stress varied. Group 2 exhibited the highest catalase (CAT) and superoxide dismutase (SOD) activities, while glutathione peroxidase (GPx) levels peaked in groups 1, 4, and 5. Malondialdehyde (MDA) concentrations were significantly reduced in the group 5 (P < 0.05). Apoptosis indices revealed that broccoli had the highest Bcl-2 levels and lowest Bax/Bcl-2 ratio, indicating its anti-apoptotic effect. Group 4 showed less efficacy compared to broccoli in protecting fertility indices. In conclusion, cadmium and lead significantly impact male fertility, while broccoli extract demonstrates promising efficacy in mitigating damage when compared to levamisole. This underscores its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Fatemeh Esfandyari
- Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Ali Akbar Amiri
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
10
|
Romashin D, Rusanov A, Tolstova T, Varshaver A, Netrusov A, Kozhin P, Luzgina N. Loss of mutant p53 in HaCaT keratinocytes promotes cadmium-induced keratin 17 expression and cell death. Biochem Biophys Res Commun 2024; 709:149834. [PMID: 38547608 DOI: 10.1016/j.bbrc.2024.149834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 μM or higher, whereas wild-type cells displayed cell death at a concentration of 30 μM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 μM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 μM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.
Collapse
Affiliation(s)
- Daniil Romashin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia.
| | - Tatiana Tolstova
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexandra Varshaver
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Netrusov
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| | - Peter Kozhin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| |
Collapse
|
11
|
Pan Q, Lu K, Luo J, Jiang Y, Xia B, Chen L, Wang M, Dai R, Chen T. Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct Integr Genomics 2023; 23:168. [PMID: 37204625 DOI: 10.1007/s10142-023-01090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
pax6 is a canonic master gene for eye formation. Knockout of pax6 affects the development of craniofacial skeleton and eye in mice. Whether pax6 affects the development of spinal bone has not been reported yet. In the present study, we used CRISPR/Cas9 system to generate Olpax6.1 mutant in Japanese medaka. Phenotype analysis showed that ocular mutation caused by the Olpax6.1 mutation occurred in the homozygous mutant. The phenotype of heterozygotes is not significantly different from that of wild-type. In addition, knockout Olpax6.1 resulted in severe curvature of the spine in the homozygous F2 generation. Comparative transcriptome analysis and qRT-PCR revealed that the defective Olpax6.1 protein caused a decrease in the expression level of sp7, col10a1a, and bglap, while the expression level of xylt2 did not change significantly. The functional enrichment of differentially expressed genes (DEGs) using the Kyoto Encyclopedia of Genes and Genomes database showed that the DEGs between Olpax6.1 mutation and wild-type were enriched in p53 signaling pathway, extracellular matrix (ECM) -receptor interaction, et al. Our results indicated that the defective Olpax6.1 protein results in the reduction of sp7 expression level and the activation of p53 signaling pathway, which leads to a decrease in the expression of genes encoding ECM protein, such as collagen protein family and bone gamma-carboxyglutamate protein, which further inhibits bone development. Based on the phenotype and molecular mechanism of ocular mutation and spinal curvature induced by Olpax6.1 knockout, we believe that the Olpax6.1-/- mutant could be a potential model for the study of spondylo-ocular syndrome.
Collapse
Affiliation(s)
- Qihua Pan
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ke Lu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junzhi Luo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuewen Jiang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bilin Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Mengyang Wang
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Ronggui Dai
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Tiansheng Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China.
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
12
|
Song R, He S, Cao Y, Lu Y, Peng Y, Zou H, Tong X, Ran D, Ma Y, Liu Z. Cadmium accelerates autophagy of osteocytes by inhibiting the PI3K/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37148155 DOI: 10.1002/tox.23823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Cadmium (Cd) can damage bone cells and cause osteoporosis. Osteocytes are the most numerous bone cells and also important target cells for Cd-induced osteotoxic damage. Autophagy plays important role in the progression of osteoporosis. However, osteocyte autophagy in Cd-induced bone injury is not well characterized. Thus, we established a Cd-induced bone injury model in BALB/c mice and a cellular damage model in MLO-Y4 cells. Aqueous Cd exposure for 16 months showed an increase in plasma alkaline phosphatase (ALP) activity and increase in urine calcium (Ca) and phosphorus (P) concentrations in vivo. Moreover, expression level of autophagy-related microtubule-associated protein 1A/1B-light chain 3 II (LC3II) and autophagy-related 5 (ATG5) proteins were induced, and the expression of sequestosome-1 (p62) was reduced, along with Cd-induced trabecular bone damage. In addition, Cd inhibited the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and phosphatidylinositol 3-kinase (PI3K). In vitro, 80 μM Cd concentrations exposure upregulated LC3II protein expression, and downregulated of p62 protein expression. Similarly, we found that treatment with 80 μM Cd resulted in a reduction in the phosphorylation levels of mTOR, AKT, and PI3K. Further experiments revealed that addition of rapamycin, an autophagy inducer, enhanced autophagy and alleviated the Cd-induced damage to MLO-Y4 cells. The findings of our study reveal for the first time that Cd causes damage to both bone and osteocytes, as well as induces autophagy in osteocytes and inhibits PI3K/AKT/mTOR signaling, which could be a protective mechanism against Cd-induced bone injury.
Collapse
Affiliation(s)
- Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
- Guangling College, Yangzhou University, Yangzhou, People's Republic of China
| | - Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Yicheng Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Yunwen Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
13
|
Gao Y, Liu T, Liu J, Yang Y, Sun K, Li Z, Zhai X, Zuo D. ZYY-B-2, a novel ALK inhibitor, overcomes resistance to ceritinib by inhibiting P-gp function and induces apoptosis through mitochondrial pathway in ceritinib-resistant H2228 cells. Chem Biol Interact 2023; 379:110516. [PMID: 37116853 DOI: 10.1016/j.cbi.2023.110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Targeting the Echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (EML4-ALK) fusion gene is a promising therapeutic strategy for non-small-cell lung cancer (NSCLC) patients. With the advent of the first- and second-generation ALK inhibitors, the mortality rate of lung cancer has shown a downward trend, but almost inevitably, patients will eventually develop resistance, which severely limits the clinical application. Hence, developing new ALK inhibitors which can overcome resistance is essential. Here, we synthesized a novel ALK inhibitor 1-[4-[[5-Chloro-4-[[2-[(1-methylethyl)sulfonyl]phenyl]amino]-2-pyrimidinyl]amino]-3-methoxyphenyl]-3-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-2-imidazolidinone (ZYY-B-2) based on the structure of the second-generation ALK inhibitor ceritinib. ZYY-B-2 exhibited impressive anti-proliferative effect in the EML4-ALK positive H2228 cells and ceritinib-resistant H2228 (H2228/Cer) cells. Meanwhile, ZYY-B-2 inhibited the activation of p-ALK in a concentration-dependent manner, and inactivated its downstream target proteins p-AKT and p-ERK to inhibit cell proliferation. Subsequently, we found that ZYY-B-2 blocked H2228 cells and H2228/Cer cells in G0/G1 phase and induced cells to undergo apoptosis through the mitochondrial pathway. The ability of its anti-proliferation and pro-apoptosis was significantly stronger than the second generation ALK inhibitor ceritinib. In addition, high expression of P-gp was found in H2228/Cer cells compared with H2228 cells. ZYY-B-2 could inhibit the expression of P-gp in a dose-dependent manner to overcome ceritinib resistance, and the suppression effect of ZYY-B-2 on P-gp might be related to its inhibition of PI3K/AKT signaling pathway. In summary, ZYY-B-2, a promising ALK inhibitor, shows potent activity against ceritinib-resistant cells, which provides experimental and theoretical basis for the further development of new ALK inhibitors.
Collapse
Affiliation(s)
- Ying Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Tong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jingang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yuying Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Keyan Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
14
|
Kamel EO, Gad-Elrab WM, Ahmed MA, Mohammedsaleh ZM, Hassanein EHM, Ali FEM. Candesartan Protects Against Cadmium-Induced Hepatorenal Syndrome by Affecting Nrf2, NF-κB, Bax/Bcl-2/Cyt-C, and Ang II/Ang 1-7 Signals. Biol Trace Elem Res 2023; 201:1846-1863. [PMID: 35590119 PMCID: PMC9931870 DOI: 10.1007/s12011-022-03286-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a serious pollutant in the environment. Candesartan is an angiotensin II (Ang II) receptor antagonist with promising diverse health benefits. The current study is planned to investigate the hepatorenal protective effects of candesartan against Cd-induced hepatic and renal intoxication. Our results demonstrated that candesartan effectively attenuated Cd-induced hepatorenal intoxication, as evidenced by improving hepatic and renal function biomarkers. Besides, candesartan reversed hepatic and renal histopathological abrasions induced by Cd toxicity. Candesartan antioxidant effect was mediated by Nrf2 activation. Also, candesartan suppressed hepatorenal inflammation by modulating NF-κB/IκB. Moreover, candesartan attenuated Cd hepatorenal apoptosis by upregulating Bcl-2 and downregulating Bax and Cyt-C proteins. Interestingly, these effects are suggested to be an outcome of modulating of Ang II/Ang 1-7 signal. Overall, our findings revealed that candesartan could attenuate Cd-induced hepatorenal intoxication through modulation of Nrf2, NF-κB/IκB, Bax/Bcl-2/Cyt-c, and Ang II/Ang 1-7 signaling pathways.
Collapse
Affiliation(s)
- Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Department of Human Anatomy & Embryology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mohammed A Ahmed
- Pathology Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
15
|
Wang R, Sang P, Guo Y, Jin P, Cheng Y, Yu H, Xie Y, Yao W, Qian H. Cadmium in food: Source, distribution and removal. Food Chem 2023; 405:134666. [DOI: 10.1016/j.foodchem.2022.134666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 12/07/2022]
|
16
|
Zheng J, Qiu G, Zhou Y, Ma K, Cui S. Hepatoprotective Effects of Taurine Against Cadmium-Induced Liver Injury in Female Mice. Biol Trace Elem Res 2023; 201:1368-1376. [PMID: 35581430 DOI: 10.1007/s12011-022-03252-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd), a heavy metal contaminant, seriously threatens human and animal health. Taurine (Tau) has been used against hepatotoxicity caused by different environmental toxins. However, it has not been elucidated whether Tau exerts its protective function against Cd-induced hepatotoxicity. The aim of this study was thus to evaluate the ameliorative function of Tau (500 mg/kg body weight intraperitoneally) on Cd-induced (2 mg/kg body weight intraperitoneally) liver toxicity in mice for 14 days. The histopathologic and ultrastructure changes as well as alterations in indexes related to liver function, antioxidant biomarkers, inflammatory, and apoptosis were evaluated. The results showed that Tau alleviated the vacuolar degeneration, nuclear condensation, mitochondria swelling, and cristae lysis of hepatocytes induced by Cd. In addition, Tau treatment significantly reduced the ALT, AST levels in serum, and inflammatory factor TNF-α and IL-1β in liver tissue. Furthermore, Tau treatment decreased the Bax/Bcl-2 ratio and cleaved caspase-3 protein expression levels. Taken together, these observations demonstrate that Tau has an important hepatic protective function against the inflammation and apoptosis induced by Cd.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
17
|
Kunioka CT, Manso MC, Carvalho M. Association between Environmental Cadmium Exposure and Osteoporosis Risk in Postmenopausal Women: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:485. [PMID: 36612804 PMCID: PMC9820024 DOI: 10.3390/ijerph20010485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Osteoporosis is a common and serious health issue among postmenopausal women. We conducted a systematic review and meta-analysis study to determine whether environmental exposure to cadmium (Cd) is a risk factor for postmenopausal osteoporosis. A PROSPERO-registered review of the literature was performed on studies evaluating the relationship between urinary Cd (UCd) concentration, an indicator of long-term Cd exposure, and bone mineral density or osteoporosis in women aged 50 years and older. PubMed, Embase, Science Direct, Web of Science, and B-on databases were searched for articles published between 2008 and 2021. The association between UCd levels and osteoporosis risk was assessed by pooled odds ratio (OR) and 95% confidence interval (CI) using random-effect models. Ten cross-sectional studies were included in the qualitative analysis, of which five were used for meta-analysis. We separately assessed the risk of osteoporosis in women exposed to Cd at low environmental levels (n = 5895; UCd ≥ 0.5 μg/g creatinine versus UCd < 0.5 μg/g creatinine) and high environmental levels (n = 1864; UCd ≥ 5 μg/g creatinine versus UCd < 5 μg/g creatinine). The pooled OR for postmenopausal osteoporosis was 1.95 (95% CI: 1.39−2.73, p < 0.001) in the low exposure level group and 1.99 (95% CI: 1.04−3.82, p = 0.040) in the high exposure level group. This study indicates that environmental Cd exposure, even at low levels, may be a risk factor for osteoporosis in postmenopausal women. Further research based on prospective studies is needed to validate these findings.
Collapse
Affiliation(s)
- Carlos Tadashi Kunioka
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Western Paraná State University (UNIOESTE), Cascavel 85819-110, Paraná, Brazil
| | - Maria Conceição Manso
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- LAQV, REQUIMTE, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Wang M, Yang X, Zhou Q, Guo Y, Chen Y, Song L, Yang J, Li L, Luo L. Neuroprotective Mechanism of Icariin on Hypoxic Ischemic Brain Damage in Neonatal Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1330928. [PMID: 36425058 PMCID: PMC9681555 DOI: 10.1155/2022/1330928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024]
Abstract
Objective Our previous results showed that icariin (ICA) could inhibit apoptosis and provide neuroprotection against hypoxic-ischemic brain damage (HIBD) in neonatal mice, but the specific mechanism of its neuroprotective effect remains unknown. This study aims at exploring whether ICA plays a neuroprotective role in apoptosis inhibition by regulating autophagy through the estrogen receptor α (ERα)/estrogen receptor β (ERβ) pathway in neonatal mice with HIBD. Methods A neonatal mouse model of HIBD was constructed in vivo, and an oxygen and glucose deprivation (OGD) model in HT22 cells from the hippocampal neuronal system was constructed in vitro. The effects of ICA pretreatment on autophagy and the expression of ERα and ERβ were detected in vitro and in vivo, respectively. ICA pretreatment was also supplemented with the autophagy inhibitor 3-methyladenine (3-MA), ERα inhibitor methylpiperidino pyrazole (MPP), and ERβ inhibitor 4-(2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyramidin-3-yl) phenol (PHTPP) to further detect whether ICA pretreatment can activate the ERα/ERβ pathway to promote autophagy and reduce HIBD-induced apoptosis to play a neuroprotective role against HIBD in neonatal mice. Results ICA pretreatment significantly promoted autophagy in HIBD mice. Treatment with 3-MA significantly inhibited the increase in autophagy induced by ICA pretreatment, reversed the neuroprotective effect of ICA pretreatment, and promoted apoptosis. Moreover, ICA pretreatment significantly increased the expression levels of the ERα and ERβ proteins in HIBD newborn mice. Both MPP and PHTPP administration significantly inhibited the expression levels of the ERα and ERβ proteins activated by ICA pretreatment, reversed the neuroprotective effects of ICA pretreatment, inhibited the increase in autophagy induced by ICA pretreatment, and promoted apoptosis. Conclusion ICA pretreatment may promote autophagy by activating the ERα and ERβ pathways, thus reducing the apoptosis induced by HIBD and exerting a neuroprotective effect on neonatal mice with HIBD.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingqi Guo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linyang Song
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Medical Association, Guangzhou 510180, China
| |
Collapse
|
19
|
Ali W, Ma Y, Zhu J, Zou H, Liu Z. Mechanisms of Cadmium-Induced Testicular Injury: A Risk to Male Fertility. Cells 2022; 11:cells11223601. [PMID: 36429028 PMCID: PMC9688678 DOI: 10.3390/cells11223601] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium is a heavy toxic metal with unknown biological functions in the human body. Over time, cadmium accretion in the different visceral organs (liver, lungs, kidney, and testis) is said to impair the function of these organs, which is associated with a relatively long biological half-life and a very low rate of excretion. Recently studies have revealed that the testes are highly sensitive to cadmium. In this review, we discussed the adverse effect of cadmium on the development and biological functions of the testis. The Sertoli cells (SCs), seminiferous tubules, and Blood Testis Barrier are severely structurally damaged by cadmium, which results in sperm loss. The development and function of Leydig cells are hindered by cadmium, which also induces Leydig cell tumors. The testis's vascular system is severely disturbed by cadmium. Cadmium also perturbs the function of somatic cells and germ cells through epigenetic regulation, giving rise to infertile or sub-fertile males. In addition, we also summarized the other findings related to cadmium-induced oxidative toxicity, apoptotic toxicity, and autophagic toxicity, along with their possible mechanisms in the testicular tissue of different animal species. Consequently, cadmium represents a high-risk factor for male fertility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, Song R, Liu Z. The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity. Int J Mol Sci 2022; 23:13491. [PMID: 36362277 PMCID: PMC9659299 DOI: 10.3390/ijms232113491] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2023] Open
Abstract
Environmental and occupational exposure to cadmium has been shown to induce kidney damage, liver injury, neurodegenerative disease, and osteoporosis. However, the mechanism by which cadmium induces autophagy in these diseases remains unclear. Studies have shown that cadmium is an effective inducer of oxidative stress, DNA damage, ER stress, and autophagy, which are thought to be adaptive stress responses that allow cells exposed to cadmium to survive in an adverse environment. However, excessive stress will cause tissue damage by inducing apoptosis, pyroptosis, and ferroptosis. Evidently, oxidative stress-induced autophagy plays different roles in low- or high-dose cadmium exposure-induced cell damage, either causing apoptosis, pyroptosis, and ferroptosis or inducing cell survival. Meanwhile, different cell types have different sensitivities to cadmium, which ultimately determines the fate of the cell. In this review, we provided a detailed survey of the current literature on autophagy in cadmium-induced tissue damage. A better understanding of the complex regulation of cell death by autophagy might contribute to the development of novel preventive and therapeutic strategies to treat acute and chronic cadmium toxicity.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qunchao Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengguang Yue
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
He S, Zhang K, Cao Y, Liu G, Zou H, Song R, Liu Z. Effect of cadmium on Rho GTPases signal transduction during osteoclast differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1608-1617. [PMID: 35257471 DOI: 10.1002/tox.23510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Osteoclasts are the key target cells for cadmium (Cd)-induced bone metabolism diseases, while Rho GTPases play an important role in osteoclast differentiation and bone resorption. To identify new therapeutic targets of Cd-induced bone diseases; we evaluated signal transduction through Rho GTPases during osteoclast differentiation under the influence of Cd. In osteoclastic precursor cells, 10 nM Cd induced pseudopodia stretching, promoted cell migration, upregulated the levels of Cdc42, and RhoQ mRNAs and downstream Rho-associated coiled-coil kinase 1 (ROCK1) and ROCK2 proteins, and downregulated the actin-related protein 2/3 (ARP2/3) levels. Cd at 2 and 5 μM shortened the pseudopodia, inhibited cell migration, and decreased ROCK1, ROCK2, and ARP2/3 protein levels; Cd at 5 μM also reduced the mRNA expression levels of Rac1, Rac2, and RhoU mRNAs and decreased the level of phosphorylated (p)-cofilin. In osteoclasts, 10 nM Cd induced the formation of sealing zones, slightly upregulated Cdc42 mRNA levels and ROCK2 and ARP2/3 protein levels and significantly reduced p-cofilin levels. Cd at 2 μM and 5 μM Cd blocked the fusion of precursor cells; and 5 μM Cd downregulated the expression levels of RhoB, Rac1, Rac3, and RhoU mRNAs, and ROCK1, p-cofilin and ARP2/3 protein levels, significantly. In vivo, Cd (at 5 or 25 mg/L) increased the levels of key proteins RhoA, Rac1/2/3, Cdc42, and RhoU and their mRNAs in bone marrow cells. In summary, the results suggested that Cd affected the differentiation process of osteoclast and altered the expression of several Rho GTPases, which might be crucial targets of Cd during the differentiation of osteoclasts.
Collapse
Affiliation(s)
- Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
22
|
Zhao X, Shi X, Yao Y, Li X, Xu S. Autophagy flux inhibition mediated by lysosomal dysfunction participates in the cadmium exposure-induced cardiotoxicity in swine. Biofactors 2022; 48:946-958. [PMID: 35286732 DOI: 10.1002/biof.1834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd), a common toxic heavy metal, is believed as a risk factor for the induction and progression of cardiovascular disease. Autophagy is a highly ordered intracellular lysosomal-mediated degradation pathway that is crucial for protein and organelle quality control. Autophagy dysfunction could develop exacerbated cardiac dysfunction. However, the role of autophagy in Cd exposure-induced cardiotoxicity remains largely unknown. In this study, the Cd-induced swine cardiotoxicity model was established by feeding with a CdCl2 suppled diet (20 mg Cd/kg diet). The results showed that Cd exposure increased the expression of endoplasmic reticulum stress-related genes (GRP78, GRP94, IRE1, XBP1, PERK, ATF4, and ATF6), increased the expression of Ca2+ release channels IP3R and RYR1 and decreased the expression of Ca2+ uptake pump SERCA1. Cd exposure upregulated the expression of autophagy-related genes (CAMKKII, AMPK, ATG5, ATG7, ATG12, Beclin1, LC3-II, and P62) and downregulated mTOR expression. Cd exposure inhibited the expression of V-ATPase and cathepsins (CTSB and CTSD), and increased the expression of cathepsins in cytoplasm. Cd exposure decreased the colocalization of autophagosome and lysosome. This study revealed that autophagy flux inhibition caused by lysosomal dysfunction participates in the cardiotoxicity induced by Cd exposure in swine.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Zhang H, Huang J, Yang J, Cai J, Liu Q, Zhang X, Bao J, Zhang Z. Cadmium induces apoptosis and autophagy in swine small intestine by downregulating the PI3K/Akt pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41207-41218. [PMID: 35091949 DOI: 10.1007/s11356-022-18863-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an environmental contaminant, which is potentially toxic. It is well known that Cd can accumulate in the liver and kidney and cause serious damage. However, few studies have investigated the mechanism of intestinal damage induced by Cd in swine. Here, we established Cd poisoning models in vivo and in vitro to explore the mechanism of intestinal injury induced by Cd in swine. The morphology of intestinal tissue cells was observed by TUNEL staining and electron microscopy, and the morphology of IPEC-J2 cells was observed by flow cytometry, Hoechst staining, and MDC staining. Cell morphological observations revealed that Cd treatment induced ileal apoptosis and autophagy. The effects of Cd on the PI3K/Akt pathway, as well as on apoptosis and autophagy-related protein expression in intestinal cells, were analyzed by western blot (WB) and the expression of mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that Cd induced autophagy by increasing the levels of autophagy markers Beclin1, Autophagy-associated gene 5 (ATG5), Autophagy-associated gene 16 (ATG16), and Microtubule-associated protein light chains 3-2 (LC3-II), and by reducing the expression levels of Mechanistic target of rapamycin kinase (mTOR) and Microtubule-associated protein light chains 3-1 (LC3-I). Cell apoptosis was induced by increasing the expression of apoptosis markers Bcl-2 associated X protein (Bax), Cysteinyl aspartate specific proteinase 9 (Caspase9), cleaved Caspase9, Cysteinyl aspartate specific proteinase 3 (Caspase3), and cleaved Caspase3, and by reducing the expression of B cell lymphoma/leukemia 2 (Bcl-2). At the same time, Cd decreased the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and their phosphorylation. We treated IPEC-J2 cells with the PI3K activator 740Y-P and analyzed the morphological changes as well as autophagy and apoptosis-related gene expression. The results showed that 740Y-P could reduce apoptosis and autophagy induced by Cd. In conclusion, our findings suggest that Cd induces intestinal apoptosis and autophagy in swine by inactivating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jiaqiang Huang
- Department of Nutrition and Health, College of Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jun Bao
- College of Animal Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, People's Republic of China.
| |
Collapse
|
24
|
Sun Y, Lv Y, Li Y, Li J, Liu J, Luo L, Zhang C, Zhang W. Maternal genetic effect on apoptosis of ovarian granulosa cells induced by cadmium. Food Chem Toxicol 2022; 165:113079. [PMID: 35525383 DOI: 10.1016/j.fct.2022.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
To investigate the maternal genetic effects of cadmium (Cd) -induced apoptotic in ovarian granulosa cells (OGCs). Herein, pregnant Sprague-Dawley (SD) rats were treated with CdCl2 from day 1 to day 20, F1 and F2 female rats were mated with untreated males to produce F2 and F3 generations. Under this model, significant apoptotic changes were observed in F1 OGCs induced by Cd (Liu et al., 2021). In this study, no apoptotic bodies were found in F2 while the mitochondrial membrane potential level decreased significantly but not in F3. Moreover, significant changes in bcl-xl and Cle-CASPASE-9/Pro-CASPASE-9 ratio were observed in F2 which disappears in F3. The DNA methylation sequencing and microRNAs (miRNAs) microarray reveals different gene methylation and miRNAs changes in F2 and F3. Notably, miR-132-3p, miR-199a-5p, and miR-1949 were upregulated in F1 while downregulated in F2 and F3 in which apoptosis gradually disappeared. Further, miRNA maturation-related genes and transcription factors have different expression patterns in F1-F3. These results indicate that maternal genetic intergenerational/transgenerational effect of Cd-induced OGCs apoptotic was significantly attenuated and disappeared, which was related to self-repair regulation of apoptosis-related genes. The changes in apoptosis-related miRNAs and DNA methylation may be important, and the role of transcription factors deserve attention.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yake Lv
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jingwen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
25
|
Park MN, Jeon HW, Rahman MA, Park SS, Jeong SY, Kim KH, Kim SH, Kim W, Kim B. Daemonorops draco Blume Induces Apoptosis Against Acute Myeloid Leukemia Cells via Regulation of the miR-216b/c-Jun. Front Oncol 2022; 12:808174. [PMID: 35356209 PMCID: PMC8959842 DOI: 10.3389/fonc.2022.808174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Daemonorops draco Blume (DD), also called dragon’s blood, has been used as a traditional Korean medicine, especially for relieving pain caused by wound infection. Recently, it has been described that DD has antibacterial and analgesic effects. In this study, the underlying anticancer effect of DD associated with apoptosis was investigated in acute myeloid leukemia cell lines U937 and THP-1. DD exhibited cytotoxic effects and induced apoptosis in U937 and THP-1 cells. Moreover, DD treatment significantly reduced mitochondrial membrane potential (ΔΨ). The protein expression of cleaved poly(ADP-ribose) polymerase, cleaved caspase-3, p-H2A.X, CCAAT/enhancer-binding protein (CHOP), and activating transcription factor 4 was upregulated by DD treatment. Consistently, DD-treated cells had increased reactive oxygen species (ROS) level in a concentration-dependent manner via miR-216b activation in association with c-Jun inhibition. N-acetyl-L-cysteine pretreatment reversed the cytotoxic effect of DD treatment as well as prevented ROS accumulation. Collectively, the results of this study suggest that the anticancer effect of DD in AML was mediated by CHOP-dependent apoptosis along with ROS accumulation and included upregulation of miR-216b followed by a decrease in c-Jun.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Se Sun Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Woojin Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
26
|
Toxicological mechanism of large amount of copper supplementation: Effects on endoplasmic reticulum stress and mitochondria-mediated apoptosis by Nrf2/HO-1 pathway-induced oxidative stress in the porcine myocardium. J Inorg Biochem 2022; 230:111750. [DOI: 10.1016/j.jinorgbio.2022.111750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022]
|
27
|
Liu D, Cheng Y, Chen J, Mei X, Tang Z, Cao X, Liu J. Exploring the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity by luteolin using network pharmacology and cell biology technology. Food Chem Toxicol 2021; 160:112779. [PMID: 34958803 DOI: 10.1016/j.fct.2021.112779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Acrolein is a highly reactive unsaturated hazardous air pollutant, which is extremely irritating to the respiratory tract. Luteolin, an active flavonoid compound, possesses multiple biological activities. The purpose of this study was to evaluate the mechanism of the inhibition of acrolein-induced human bronchial epithelial (BEAS-2B) cells cytotoxicity by luteolin using network pharmacology and cell biology technology. Firstly, network pharmacology results indicated that oxidative stress processes might play an important role in luteolin inhibiting lung injury. Next, it was verified at the cellular level. Reactive oxygen species (ROS) generation increased, glutathione (GSH) level decreased after exposure to acrolein. MAPK signaling pathways were activated, which activated downstream IκBα/NF-κB signaling pathways. Meanwhile, acrolein caused oxidative DNA damage and double-strand breaks, induced DNA damage response (DDR) and apoptosis. These adverse effects were significantly reversed by luteolin, which inhibited the activation of MAPK/IκBα/NF-κB and DDR pathways, and reduced the ratio of Bax/Bcl-2. Moreover, luteolin also had a similar effect to antioxidant N-acetyl cysteine (NAC) in the regulation of signaling transduction mechanisms, which indicated that the regulation of oxidative stress played an important role in the process. These results provide an experimental basis for elucidating the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity with luteolin.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Junliang Chen
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|
28
|
Sun J, Yu F, Wang T, Bian J, Liu Z, Zou H. The role of DRP1- PINK1-Parkin-mediated mitophagy in early cadmium-induced liver damage. Toxicology 2021; 466:153082. [PMID: 34952138 DOI: 10.1016/j.tox.2021.153082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) is an important environmental pollutant that causes varying degrees of damage to multiple systems of the body. However, the specific mechanism of Cd-induced liver mitophagy remains unclear. In the present study, 5-week-old BALB/c mice and a mouse liver parenchyma cell line (AML12) were studied using a combination of in vivo and in vitro studies. We found that Cd damaged liver cells, destroy the structure and function of mitochondria, and increased the production of superoxide anions. This study further examined the effect of Cd on mitochondrial dynamics and mitophagy and showed that Cd increased mitochondrial division and induced mitophagy. The PINK1-Parkin pathway is a classical mitophagy pathway. Cd-induced mitophagy was inhibited after significantly knocking down Pink1. Mdivi-1 can effectively inhibit mitochondrial division. In this study, Mdivi-1 inhibited the expression of DRP1 and significantly inhibited the occurrence of mitophagy induced by Cd. We further examined the effect of Cd on mitophagy flux. Cd did not increase lysosomal colocalization with mitochondria. In summary, Cd increase the level of oxidative stress, destroy the structure and function of mitochondria, destroy the homeostasis of mitochondrial division and fusion, induce mitophagy through the PINK1-Parkin pathway. Mitophagy plays a protective role in early cadmium-induced liver damage.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Fan Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
29
|
Danes JM, Palma FR, Bonini MG. Arsenic and other metals as phenotype driving electrophiles in carcinogenesis. Semin Cancer Biol 2021; 76:287-291. [PMID: 34563651 DOI: 10.1016/j.semcancer.2021.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022]
Abstract
There are several sources of heavy metal exposures whether occupational or environmental. These are connected both with the existence of natural reservoirs of metal toxicants or human activity such as mining, welding and construction. In general, exposure to heavy metals, such as cadmium (Cd), mercury (Hg), nickel (Ni), lead (Pb) and metalloids, such as arsenic (As), has been associated with diseases including neurodegenerative diseases, diabetes and cancer. Common to these diseases is the loss of cellular physiologic performance and phenotype required for proper function. On the metal side, electrophilic behavior that disrupts the electronic (or redox) state of cells is a common feature. This suggests that there may be a connection between changes to the redox equilibrium of cells caused by environmental exposures to heavy metals and the pathogenic effects of such exposures. In this mini-review, we will focus on two environmental contaminants cadmium (a metal) and arsenic (a metalloid) and explore their interactions with living organisms from the perspective of their electrophilic chemical reactivity that underlies both their potential as carcinogens and as drivers of more aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Jeanne M Danes
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, United States
| | - Flavio R Palma
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, United States
| | - Marcelo G Bonini
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, United States.
| |
Collapse
|
30
|
Kiss A, Csikos C, Regdon Z, Polgár Z, Virág L, Hegedűs C. NMNAT1 Is a Survival Factor in Actinomycin D-Induced Osteosarcoma Cell Death. Int J Mol Sci 2021; 22:8869. [PMID: 34445574 PMCID: PMC8396190 DOI: 10.3390/ijms22168869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/25/2023] Open
Abstract
Osteosarcoma is a frequent and extremely aggressive type of pediatric cancer. New therapeutic approaches are needed to improve the overall survival of osteosarcoma patients. Our previous results suggest that NMNAT1, a key enzyme in nuclear NAD+ synthesis, facilitates the survival of cisplatin-treated osteosarcoma cells. A high-throughput cytotoxicity screening was performed to identify novel pathways or compounds linked to the cancer-promoting role of NMNAT1. Nine compounds caused higher toxicity in the NMNAT1 KO U2OS cells compared to their wild type counterparts, and actinomycin D (ActD) was the most potent. ActD-treatment of NMNAT1 KO cells increased caspase activity and secondary necrosis. The reduced NAD+ content in NMNAT1 KO cells was further decreased by ActD, which partially inhibited NAD+-dependent enzymes, including the DNA nick sensor enzyme PARP1 and the NAD+-dependent deacetylase SIRT1. Impaired PARP1 activity increased DNA damage in ActD-treated NMNAT1 knockout cells, while SIRT1 impairment increased acetylation of the p53 protein, causing the upregulation of pro-apoptotic proteins (NOXA, BAX). Proliferation was decreased through both PARP- and SIRT-dependent pathways. On the one hand, PARP inhibitors sensitized wild type but not NMNAT1 KO cells to ActD-induced anti-clonogenic effects; on the other hand, over-acetylated p53 induced the expression of the anti-proliferative p21 protein leading to cell cycle arrest. Based on our results, NMNAT1 acts as a survival factor in ActD-treated osteosarcoma cells. By inhibiting both PARP1- and SIRT1-dependent cellular pathways, NMNAT1 inhibition can be a promising new tool in osteosarcoma chemotherapy.
Collapse
Affiliation(s)
- Alexandra Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csaba Csikos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
- MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| |
Collapse
|
31
|
Cadmium induces apoptosis of pig lymph nodes by regulating the PI3K/AKT/HIF-1α pathway. Toxicology 2021; 451:152694. [PMID: 33493553 DOI: 10.1016/j.tox.2021.152694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study was aimed to explore the possible mechanism of environmental metal cadmium (Cd) inducing apoptosis of pig lymph nodes. METHOD 10 healthy 6-week-old weaned piglets were randomly divided into two groups (n = 5 pigs/group). The control group was fed with a basic diet, and the test group was fed with a basic diet of 20 mg/kg CdCl2. RESULTS The Cd deposition in mesenteric lymph nodes (MLN), inguinal lymph nodes (ILN) and submaxillary lymph nodes (SLN) after Cd exposure was 2.37 folds, 1.4 folds and 1.8 folds of the control group, respectively. And the rate of MLN and ILN apoptotic cells in the Cd group was 4.11 folds and 9.18 folds of the control group, respectively. The mRNA levels of SOD1, SOD2, CAT, GPX1 and GSH in the Cd group were reduced. Similarly, the two-phase detoxification enzymes had a significant downward trend. Cd exposure decreased the activities of GSH, GSH-Px, SOD, CAT, and increased H2O2 and MDA levels. The mRNA and protein levels of Drp1 and Mff in the Cd group were higher than the corresponding control group, and the mRNA and protein levels of Mfn1 and Mfn2 were lower than those in the control group. In addition, the mRNA and protein levels of pro-apoptotic genes in the Cd group were lower than those in the control group. Cd can significantly reduce the expression of PI3K, AKT and HIF-1α in the three lymph nodes. In summary, Cd induces oxidative stress and regulates the PI3K/AKT/HIF-1α signal transduction pathway to cause mitochondrial dynamics disorder, which leads to the apoptosis of pig lymph nodes, suggesting that Cd-induced mitochondrial pathway apoptosis is related to Cd pig lymph nodes play an important role in the toxicity mechanism.
Collapse
|