1
|
Liang Y, Wang B, Yu Q, Wang W, Ge S, Shao J. Ebselen Optimized the Therapeutic Effects of Silver Nanoparticles for Periodontal Treatment. Int J Nanomedicine 2023; 18:8113-8130. [PMID: 38169981 PMCID: PMC10759458 DOI: 10.2147/ijn.s434579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Objective Silver nanoparticles (AgNPs) possess excellent antibacterial effects on periodontal pathogens, but their clinical application is limited mainly due to their cytotoxicity through inducing oxidative stress in human cells. Ebselen disrupts the reactive oxygen species (ROS) scavenging in bacteria and relieves oxidative stress in mammalian cells. This study aimed to assess the antibacterial and anti-inflammatory effects of AgNPs and ebselen as well as the protective effect of ebselen, to further provide the theoretical basis for their future application in periodontal treatment. Methods The antibacterial and anti-biofilm effects of the synthesized AgNPs combined with ebselen were assessed on Porphyromonas gingivalis (P. gingivalis), Streptococcus gordonii (S. gordonii), and Fusobacterium nucleatum (F. nucleatum) in planktonic condition and as biofilms. In addition, the intracellular bactericidal efficiency of AgNPs and ebselen was evaluated in P. gingivalis-infected human gingival fibroblasts (HGFs). The cytotoxicity, intracellular ROS levels, and potential antioxidative enzymes were detected in HGFs treated with AgNPs and ebselen. Further, the anti-inflammatory effects were evaluated by in vitro and in vivo experiments. Results The combination of AgNPs and ebselen showed excellent antibacterial effects against planktonic P. gingivalis and F. nucleatum and synergistic antibiofilm effects on all mono- and multi-species biofilms. In addition, ebselen significantly enhanced the intracellular bactericidal efficiency of AgNPs. Furthermore, ebselen combined with up to 20 μg/mL AgNPs showed no obvious cytotoxicity to HGFs. Evidently, ebselen alleviated the AgNPs-induced ROS by increasing the levels of glutathione and superoxide dismutase 2. Moreover, AgNPs and ebselen together declined the release of P. gingivalis-stimulated inflammatory cytokines both in vitro and in vivo, and reduced alveolar bone resorption effectively. Conclusion AgNPs combined with ebselen would be an effective adjuvant for periodontal treatment owing to their synergistic antibacterial and anti-inflammatory effects.
Collapse
Affiliation(s)
- Ye Liang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
| | - Bing Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
| | - Qing Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
| | - Weijia Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China
| |
Collapse
|
2
|
Yang LJ, He JB, Jiang Y, Li J, Zhou ZW, Zhang C, Tao X, Chen AF, Peng C, Xie HH. Berberine hydrochloride inhibits migration ability via increasing inducible NO synthase and peroxynitrite in HTR-8/SVneo cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116087. [PMID: 36584918 DOI: 10.1016/j.jep.2022.116087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inadequate trophoblasts migration and invasion is considered as an initial event resulting in preeclampsia, which is closely related to oxidative stress. Berberine hydrochloride (BBR), extracted from the traditional medicinal plant Coptis chinensis Franch., exerts a diversity of pharmacological effects, and the crude drug has been widely taken by most Chinese women to treat nausea and vomit during pregnancy. But there is no research regarding its effects on trophoblast cell function. AIM OF THE STUDY This study aimed to investigate the effect of BBR on human-trophoblast-derived cell line (HTR-8/SVneo) migration ability and its mechanism. MATERIALS AND METHODS Cell viability was detected by CCK-8 assay. The effect of BBR on cells migration function was examined by scratch wound healing assay and transwell migration assay. Intracellular nitric oxide (NO), superoxide (O2-) and peroxynitrite (ONOO-) levels were measured by flow cytometry. The expression levels of inducible NO synthase (iNOS), eNOS, p-eNOS, MnSOD, CuZnSOD, Rac1, NOX1, TLR4, nuclear factor-κB (NF-κB), p-NFκB, pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in cells were analyzed by Western blotting. Uric acid sodium salt (UA), the scavenger of ONOO-, PEG-SOD (a specific superoxide scavenger), L-NAME (a NOS inhibitor) and antioxidants (Vit E and DFO) were further used to characterize the pathway of BBR action. RESULTS 5 μM BBR decreased both the migration distance and the number of migrated cells without affecting cells viability in HTR-8/SVneo cells after 24 h treatment. BBR could increase the level of NO in HTR-8/SVneo cells, and the over-production of NO might be attributable to iNOS, but not eNOS. BBR could increase intracellular O2- levels, and the over-production of O2- is closely related with Rac1 in HTR-8/SVneo cells. The excessive production of NO and O2- further react to form ONOO-, and the increased ONOO- level induced by BBR was blunted by UA. Moreover, UA improved the impaired migration function caused by BBR in HTR-8/SVneo cells. The depressed migration function stimulated by BBR in HTR-8/SVneo cells was diminished by PEG-SOD and L-NAME. Furthermore, BBR increased the expression of IL-6 in HTR-8/SVneo cells, and antioxidants (Vit E and DFO) could decrease the expression of IL-6 and iNOS induced by BBR. CONCLUSIONS BBR inhibits the cell migration ability through increasing inducible NO synthase and peroxynitrite in HTR-8/SVneo cells, indicating that BBR and traditional Chinese medicines containing a high proportion of BBR should be used with caution in pregnant women.
Collapse
Affiliation(s)
- Li-Jun Yang
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jia-Bei He
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu Jiang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jianzhong Li
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Zhen-Wei Zhou
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Cheng Peng
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - He-Hui Xie
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Luo X, Xie D, Hu J, Su J, Xue Z. Oxidative Stress and Inflammatory Biomarkers for Populations with Occupational Exposure to Nanomaterials: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2022; 11:2182. [PMID: 36358554 PMCID: PMC9687069 DOI: 10.3390/antiox11112182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2023] Open
Abstract
Exposure to nanomaterials (NMs) is suggested to have the potential to cause harmful health effects. Activations of oxidative stress and inflammation are assumed as main contributors to NM-induced toxicity. Thus, oxidative stress- and inflammation-related indicators may serve as biomarkers for occupational risk assessment. However, the correlation between NM exposure and these biomarkers remains controversial. This study aimed to perform a meta-analysis to systematically investigate the alterations of various biomarkers after NM exposure. Twenty-eight studies were found eligible by searching PubMed, EMBASE and Cochrane Library databases. The pooled results showed NM exposure was significantly associated with increases in the levels of malonaldehyde (MDA) [standardized mean difference (SMD) = 2.18; 95% confidence interval (CI), 1.50-2.87], 4-hydroxy-2-nonhenal (HNE) (SMD = 2.05; 95% CI, 1.13-2.96), aldehydes C6-12 (SMD = 3.45; 95% CI, 2.80-4.10), 8-hydroxyguanine (8-OHG) (SMD = 2.98; 95% CI, 2.22-3.74), 5-hydroxymethyl uracil (5-OHMeU) (SMD = 1.90; 95% CI, 1.23-2.58), o-tyrosine (o-Tyr) (SMD = 1.81; 95% CI, 1.22-2.41), 3-nitrotyrosine (3-NOTyr) (SMD = 2.63; 95% CI, 1.74-3.52), interleukin (IL)-1β (SMD = 1.76; 95% CI, 0.87-2.66), tumor necrosis factor (TNF)-α (SMD = 1.52; 95% CI, 1.03-2.01), myeloperoxidase (MPO) (SMD = 0.25; 95% CI, 0.16-0.34) and fibrinogen (SMD = 0.11; 95% CI, 0.02-0.21), and decreases in the levels of glutathione peroxidase (GPx) (SMD = -0.31; 95% CI, -0.52--0.11) and IL-6 soluble receptor (IL-6sR) (SMD = -0.18; 95% CI, -0.28--0.09). Subgroup analysis indicated oxidative stress biomarkers (MDA, HNE, aldehydes C6-12, 8-OHG, 5-OHMeU, o-Tyr, 3-NOTyr and GPx) in exhaled breath condensate (EBC) and blood samples were strongly changed by NM exposure; inflammatory biomarkers (IL-1β, TNF-α, MPO, fibrinogen and IL-6sR) were all significant in EBC, blood, sputum and nasal lavage samples. In conclusion, our findings suggest that these oxidative stress and inflammatory indicators may be promising biomarkers for the biological monitoring of occupationally NM-exposed workers.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jing Su
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Shanghai 200240, China
| | - Zhebin Xue
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| |
Collapse
|
4
|
Ahmad A, Ansari MM, AlAsmari AF, Ali N, Maqbool MT, Raza SS, Khan R. Dose dependent safety implications and acute intravenous toxicity of aminocellulose-grafted-polycaprolactone coated gelatin nanoparticles in mice. Int J Biol Macromol 2021; 192:1150-1159. [PMID: 34653441 DOI: 10.1016/j.ijbiomac.2021.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Polymeric nanoparticles (NPs) are the most widely researched nanoformulations and gained broad acceptance in nanotherapeutics for targeted drug delivery and theranostics. However, lack of regulations, guidelines, harmonized standards, and limitations with their employability in clinical circumstances necessitates an in-depth understanding of their toxicology. Here, we examined the in-vivo toxicity of core-shell polymeric NPs made up of gelatin core coated with an outer layer of aminocellulose-grafted polycaprolactone (PCL-AC) synthesized for drug delivery purposes in inflammatory disorders. Nanoparticles were administered intravenously in Swiss albino mice, in multiple dosing (10, 25, and 50 mg/kg body weight) and outcomes of serum biochemistry analysis and histopathology evaluation exhibited that the highest 50 mg/kg administration of NPs altered biochemistry and histopathology aspects of vital organs, while doses of 10 and 25 mg/kg were safe and biocompatible. Further, mast cell (toluidine blue) staining confirmed that administration of the highest dose enhanced mast cell infiltration in tissues of vital organs, while lower doses did not exhibit any of these alterations. Therefore, the results of the present study establish that the NPs disposal in-vivo culminates into alterations in organ structure and function consequences such that lower doses are quite biocompatible and do not demonstrate any structural or functional toxicity while some toxicological effects start appearing at the highest dose.
Collapse
Affiliation(s)
- Anas Ahmad
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab Pin 140306, India
| | - Md Meraj Ansari
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab Pin 140306, India
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Mir Tahir Maqbool
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab Pin 140306, India.
| |
Collapse
|