1
|
Vaughn TM, Soheil S, Ogundele OM, Fronczek FR, Uppu RM. 3,5,6-Tri-chloro-pyridin-2-ol. IUCRDATA 2024; 9:x241126. [PMID: 39649088 PMCID: PMC11618871 DOI: 10.1107/s241431462401126x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
The title compound, C5H2Cl3NO, is almost planar. In the crystal, the mol-ecules form centrosymmetric hydrogen-bonded dimers through pairwise O-H⋯N inter-actions to generate R 2 2(8) loops.
Collapse
Affiliation(s)
- Tashonda M. Vaughn
- Department of Environmental Toxicology Southern University and A&M College Baton Rouge Louisiana 70813 USA
| | - Saneei Soheil
- Department of Environmental Toxicology Southern University and A&M College Baton Rouge Louisiana 70813 USA
| | - Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences School of Veterinary Medicine Louisiana State University,Baton RougeLouisiana 70810 USA
| | - Frank R. Fronczek
- Department of Chemistry Louisiana State University,Baton Rouge LA 70803 USA
| | - Rao M. Uppu
- Department of Environmental Toxicology Southern University and A&M College Baton Rouge Louisiana 70813 USA
| |
Collapse
|
2
|
Mansukhani M, Roy P, Ganguli N, Majumdar SS, Sharma SS. Organophosphate pesticide chlorpyrifos and its metabolite 3,5,6-trichloropyridinol downregulate the expression of genes essential for spermatogenesis in caprine testes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106065. [PMID: 39277380 DOI: 10.1016/j.pestbp.2024.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
Organophosphate pesticides have potent endocrine disrupting effects, hence banned in many countries. However, many organophosphates like chlorpyrifos, malathion et cetera continue to be used in some countries (Wołejko et al., 2022; Wołejko et al., 2022)including India. Fodder mediated ingestion of these substances may be harmful for livestock fertility. We have investigated the effect of the widely used organophosphate pesticide chlorpyrifos (CPF) and its metabolite, 3,5,6-trichloropyridinol (TCPy) on the expression of genes essential for spermatogenesis in goat testicular tissue. The testicular Sertoli cells (Sc) regulate germ cell division and differentiation under the influence of follicle stimulating hormone (FSH) and testosterone (T). Impaired FSH and T mediated signalling in Sc can compromise spermatogenesis leading to sub-fertility/infertility. As Sc express receptors (R) for FSH and T, they are highly susceptible to the endocrine disrupting effects of pesticides affecting fertility by dysregulating the functioning of Sc. Our results indicated that exposure to different concentrations of CPF and TCPy can compromise Sc function by downregulating the expression of FSHR and AR which was associated with a concomitant decline in the expression of genes essential for germ cell division and differentiation, like KITLG, INHBB, CLDN11 and GJA1. CPF also induced a significant reduction in the activity of acetylcholinesterase in the testes and increased the total testicular antioxidant capacity. Our results suggested that CPF and its metabolite TCPy may induce reproductive toxicity by dysregulating the expression of Sc specific genes essential for spermatogenesis.
Collapse
Affiliation(s)
- Meenakshi Mansukhani
- National Institute of Animal Biotechnology, Hyderabad 50032, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Nirmalya Ganguli
- National Institute of Animal Biotechnology, Hyderabad 50032, India; Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | |
Collapse
|
3
|
Godderis L, De Ryck E, Baeyens W, Geerts L, Jacobs G, Maesen P, Mertens B, Schroyen G, Van Belleghem F, Vanoirbeek J, Van Larebeke N. Towards a more effective REACH legislation in protecting human health. Toxicol Sci 2024; 199:194-202. [PMID: 38419586 DOI: 10.1093/toxsci/kfae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
There is growing evidence indicating the substantial contribution of man-made products to an increase in the risk of diseases of civilization. In this article, the Belgian Scientific Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) Committee gives a critical view on the working of REACH. The current regulatory framework needs to further evolve taking into account data generated using modern science and technology. There is a need for improved assessment process not only before but also after entering the market. Objectivity, transparency, and the follow-up after market access can be optimized. Additionally, no guidance documents exist for regulation of mixture effects. Further, the lengthiness before regulatory action is a big concern. Decision-making often takes several years leading to uncertainties for both producers and end users. A first proposed improvement is the implementation of independent toxicity testing, to assure objectivity, transparency, and check and improve compliance. A "no data, no market" principle could prevent access of hazardous chemicals to the market. Additionally, the introduction of novel testing could improve information on endpoints such as endocrine disrupting abilities, neurotoxicity, and immunotoxicity. An adapted regulatory framework that integrates data from different sources and comparing the outputs with estimates of exposure is required. Fast toxicology battery testing and toxicokinetic testing could improve speed of decision-making. Hereby, several improvements have been proposed that could improve the current REACH legislation.
Collapse
Affiliation(s)
- Lode Godderis
- Department Public Health and Primary Care, Centre for Environment and Health, Catholic University Leuven, 3000 Leuven, Belgium
- External Service for Prevention and Protection at Work, IDEWE, 3001 Heverlee, Belgium
| | - Evi De Ryck
- Department Public Health and Primary Care, Centre for Environment and Health, Catholic University Leuven, 3000 Leuven, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geo-Chemistry, VUB, 1050 Brussels, Belgium
| | - Lieve Geerts
- Flemish Institute for Technological Research, VITO, 2400 Mol, Belgium
| | - Griet Jacobs
- Flemish Institute for Technological Research, VITO, 2400 Mol, Belgium
| | - Phillippe Maesen
- Faculté de Gembloux Agro-Bio Tech, Uliège, 5030 Gembloux, Belgium
| | - Birgit Mertens
- Department of Chemical and Physical Health Risks, Sciensano, 1050 Brussels, Belgium
| | - Guy Schroyen
- Institut Scientifique de Service Public, ISSeP, 4000 Liège, Belgium
| | - Frank Van Belleghem
- Department of Environmental Sciences, Faculty of Science, Open Universiteit, 6419 Heerlen, The Netherlands
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jeroen Vanoirbeek
- Department Public Health and Primary Care, Centre for Environment and Health, Catholic University Leuven, 3000 Leuven, Belgium
| | | |
Collapse
|
4
|
Sawicki K, Matysiak-Kucharek M, Kruszewski M, Wojtyła-Buciora P, Kapka-Skrzypczak L. Influence of chlorpyrifos exposure on UVB irradiation induced toxicity in human skin cells. J Occup Med Toxicol 2023; 18:23. [PMID: 37803377 PMCID: PMC10559529 DOI: 10.1186/s12995-023-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Although chlorpyrifos (CPS) has been banned in many developed countries, it still remains one of the best-selling pesticides in the world. Widespread environmental and occupational exposure to CPS pose a serious risk to human health. Another environmental factor that can adversely affect human health is ultraviolet radiation B (UVB, 280-315 nm wave length). Here we attempt determine if exposure to CPS can modify toxic effects of UVB. Such situation might be a common phenomenon in agriculture workers, where exposure to both factors takes place. METHODS Two skin cell lines; namely human immortalized keratinocytes HaCaT and BJ human fibroblasts were used in this study. Cytotoxicity was investigated using a cell membrane damage detection assay (LDH Cytotoxicity Assay), a DNA damage detection assay (Comet Assay), an apoptosis induction detection assay (Apo-ONE Homogeneous Caspase-3/7 Assay) and a cell reactive oxygen species detection assay (ROS-Glo H2O2 assay). Cytokine IL-6 production was also measured in cells using an ELISA IL-6 Assay. RESULTS Pre-incubation of skin cells with CPS significantly increased UVB-induced toxicity at the highest UVB doses (15 and 20 mJ/cm2). Also pre-exposure of BJ cells to CPS significantly increased the level of DNA damage, except for 20 mJ/cm2 UVB. In contrast, pre-exposure of HaCaT cells, to CPS prior to UVB radiation did not cause any significant changes. A decrease in caspase 3/7 activity was observed in HaCaT cells pre-exposed to 250 µM CPS and 5 mJ/cm2 UVB. Meanwhile, no statistically significant changes were observed in fibroblasts. In HaCaT cells, pre-exposure to CPS resulted in a statistically significant increase in ROS production. Also, in BJ cells, similar results were obtained except for 20 mJ/cm2. Interestingly, CPS seems to inhibited IL-6 production in HaCaT and BJ cells exposed to UVB (in the case of HaCaT cells for all UVB doses, while for BJ cells only at 15 and 20 mJ/cm2). CONCLUSIONS In conclusion, the present study indicates that CPS may contribute to the increased UVB-induced toxicity in skin cells, which was likely due to the induction of ROS formation along with the generation of DNA damage. However, further studies are required to gain better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | | | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
- World Institute for Family Health, Calisia University, Kalisz, Poland.
| |
Collapse
|
5
|
Huang M, Zou M, Mao S, Xu W, Hong Y, Wang H, Gui F, Yang L, Lian F, Chen R. 3,5,6-Trichloro-2-pyridinol confirms ototoxicity in mouse cochlear organotypic cultures and induces cytotoxicity in HEI-OC1 cells. Toxicol Appl Pharmacol 2023; 475:116612. [PMID: 37463651 DOI: 10.1016/j.taap.2023.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
The metabolite of organophosphate pesticide chlorpyrifos (CPF), 3,5,6-Trichloro-2-pyridinol (TCP), is persistent and mobile toxic substance in soil and water environments, exhibiting cytotoxic, genotoxic, and neurotoxic properties. However, little is known about its effects on the peripheral auditory system. Herein, we investigated the effects of TCP exposure on mouse postnatal day 3 (P3) cochlear culture and an auditory cell line HEI-OC1 to elucidate the underlying molecular mechanisms of ototoxicity. The damage of TCP to outer hair cells (OHC) and support cells (SC) was observed in a dose and time-dependent manner. OHC and SC were a significant loss from basal to apical turn of the cochlea under exposure over 800 μM TCP for 96 h. As TCP concentrations increased, cell viability was reduced whereas reactive oxygen species (ROS) generation, apoptotic cells, and the extent of DNA damage were increased, accordingly. TCP-induced phosphorylation of the p38 and JNK MAPK are the downstream effectors of ROS. The antioxidant agent, N-acetylcysteine (NAC), could reverse TCP-mediated intracellular ROS generation, inhibit the expressive level of cleaved-caspase 3 and block phosphorylation of p38/JNK. Overall, this is the first demonstration of TCP damaging to peripheral sensory HCs and SC in organotypic cultures from the postnatal cochlea. Data also showed that TCP exposure induced oxidase stress, cell apoptosis and DNA damage in the HEI-OC1 cells. These findings serve as an important reference for assessing the risk of TCP exposure.
Collapse
Affiliation(s)
- Mao Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mingshan Zou
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuangshuang Mao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wenqi Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haiyan Wang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fei Gui
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fuzhi Lian
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
6
|
Vidal J, Báez ME. Behavior of Chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) in a Sodium-Dodecyl Sulphate-Electrokinetic soil washing system. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Castiello F, Suárez B, Beneito A, Lopez-Espinosa MJ, Santa-Marina L, Lertxundi A, Tardón A, Riaño-Galán I, Casas M, Vrijheid M, Olea N, Fernández MF, Freire C. Childhood exposure to non-persistent pesticides and pubertal development in Spanish girls and boys: Evidence from the INMA (Environment and Childhood) cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120571. [PMID: 36356884 DOI: 10.1016/j.envpol.2022.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
This study assessed cross-sectional associations between urinary metabolites of non-persistent pesticides and pubertal development in boys and girls from urban and rural areas in Spain and examined effect modification by body mass index (BMI). Four metabolites of insecticides (TCPy, metabolite of chlorpyrifos; IMPy, metabolite of diazinon; DETP, non-specific metabolite of organophosphates; 3-PBA, metabolite of pyrethroids) and the metabolite of ethylene-bis-dithiocarbamate fungicides (ETU) were quantified in urine collected in 2010-2016 from 7 to 11-year-old children (606 girls, 933 boys) participating in the INMA Project. Pubertal development was ascertained by Tanner stages and/or parent-reported Pubertal Development Scale (PDS). Associations between pesticide metabolites and odds of being in stage 2+ for breast development (girls), genital development (boys), pubic hair growth (girls and boys), and/or overall puberty onset, gonadarche, and adrenarche (PDS for girls and boys) were examined by mixed-effect logistic regression. Effect modification by BMI was explored by interaction terms and stratified analysis. In girls, DETP and ETU concentrations>75th percentile (P75) were associated with higher odds of overall puberty development (OR [95%CI] = 1.86 [1.07-3.24] and 1.71 [1.03-2.83], respectively, for > P75 vs. undetected concentrations), while ETU > P75 was also associated with higher odds of breast development (OR [95%CI] = 5.55 [2.83-12.91]), particularly in girls with underweight/normal weight (OR [95%CI] = 10.08 [2.62-38.76]). In boys, detection of TCPy (40%) and 3-PBA (34%) was associated with higher odds of genital development (OR [95%CI] = 1.97 [1.08-3.57] and 2.08 [1.15-3.81], respectively), and the association with 3-PBA was observed in boys with overweight/obesity alone. In addition, ETU > P75 was associated with higher odds of genital development in boys with underweight/normal weight (OR [95%CI] = 2.89 [1.08-7.74]) but higher DETP with lower odds of puberty in boys with overweight/obesity (OR [95%CI] = 0.94 [0.89-0.99] per log-unit increase in concentration). Results suggest an association of childhood exposure to ETU and certain insecticides with earlier puberty in girls and boys that may be modified by child BMI.
Collapse
Affiliation(s)
- Francesca Castiello
- Pediatrics Unit, San Cecilio University Hospital, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain; Health Department of Basque Government, Subdirectorate of Public Health of Gipuzkoa, 20013, San Sebastián, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Department of Preventive Medicine and Public Health, School of Medicine, University of Oviedo, 33003, Oviedo, Spain
| | - Isolina Riaño-Galán
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Department of Preventive Medicine and Public Health, School of Medicine, University of Oviedo, 33003, Oviedo, Spain; Pediatrics Unit, Asturias Central University Hospital, 33011, Oviedo, Asturias, Spain
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain.
| |
Collapse
|