1
|
Sonwal S, Gupta VK, Shukla S, Umapathi R, Ghoreishian SM, Han S, Bajpai VK, Cho Y, Huh YS. Panoramic view of artificial fruit ripening agents sensing technologies and the exigency of developing smart, rapid, and portable detection devices: A review. Adv Colloid Interface Sci 2024; 331:103199. [PMID: 38909548 DOI: 10.1016/j.cis.2024.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Recently, the availability of point-of-care sensor systems has led to the rapid development of smart and portable devices for the detection of hazardous analytes. The rapid flow of artificially ripened fruits into the market is associated with an elevated risk to human life, agriculture, and the ecosystem due to the use of artificial fruit ripening agents (AFRAs). Accordingly, there is a need for the development of "Point-of-care Sensors" to detect AFRAs due to several advantages, such as simple operation, promising detection mechanism, higher selectivity and sensitivity, compact, and portable. Traditional detection approaches are time-consuming and inappropriate for on-the-spot analyses. Presented comprehensive review aimed to reveal how such technology has systematically evolved over time (through conventional, advanced, and portable smart techniques) detection detect AFRA, till date. Moreover, focuses and highlights a framework of initiatives undertaken for technological advancements in the development of smart the portable detection techniques (kits) for the onsite detection of AFRAs in fruits with in-depth discussion over sensing mechanism and analytical performance of the sensing technology. Notably, colorimetric detection methods have the greatest potential for real-time monitoring of AFRA and its residues because they are easy to assemble, have a high level of selectivity and sensitivity, and can be read by the human eye independently. This study sought to differentiate between traditional credible strategies by presenting new prospects, perceptions, and challenges related to portable devices. This review provides systematic framework of advances in portable field recognition strategies for the on-spot AFRA detection in fruits and critical information for development of new paper-based portable sensors for fruit diagnostic sectors.
Collapse
Affiliation(s)
- Sonam Sonwal
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Shruti Shukla
- Department of Nanotechnology, North-Eastern Hill University (NEHU), East Khasi Hills, Shillong, Meghalaya 793022, India
| | - Reddicherla Umapathi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | | | - Soobin Han
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Vivek Kumar Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Youngjin Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Colopi A, Guida E, Cacciotti S, Fuda S, Lampitto M, Onorato A, Zucchi A, Balistreri CR, Grimaldi P, Barchi M. Dietary Exposure to Pesticide and Veterinary Drug Residues and Their Effects on Human Fertility and Embryo Development: A Global Overview. Int J Mol Sci 2024; 25:9116. [PMID: 39201802 PMCID: PMC11355024 DOI: 10.3390/ijms25169116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Drug residues that contaminate food and water represent a serious concern for human health. The major concerns regard the possible irrational use of these contaminants, since this might increase the amplitude of exposure. Multiple sources contribute to the overall exposure to contaminants, including agriculture, domestic use, personal, public and veterinary healthcare, increasing the possible origin of contamination. In this review, we focus on crop pesticides and veterinary drug residues because of their extensive use in modern agriculture and farming, which ensures food production and security for the ever-growing population around the world. We discuss crop pesticides and veterinary drug residues with respect to their worldwide distribution and impacts, with special attention on their harmful effects on human reproduction and embryo development, as well as their link to epigenetic alterations, leading to intergenerational and transgenerational diseases. Among the contaminants, the most commonly implicated in causing such disorders are organophosphates, glyphosate and antibiotics, with tetracyclines being the most frequently reported. This review highlights the importance of finding new management strategies for pesticides and veterinary drugs. Moreover, due to the still limited knowledge on inter- and transgenerational effects of these contaminants, we underlie the need to strengthen research in this field, so as to better clarify the specific effects of each contaminant and their long-term impact.
Collapse
Affiliation(s)
- Ambra Colopi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Eugenia Guida
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Silvia Cacciotti
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Serena Fuda
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Matteo Lampitto
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Angelo Onorato
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Alice Zucchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy;
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Marco Barchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| |
Collapse
|
3
|
Eze CG, Okeke ES, Nwankwo CE, Nyaruaba R, Anand U, Okoro OJ, Bontempi E. Emerging contaminants in food matrices: An overview of the occurrence, pathways, impacts and detection techniques of per- and polyfluoroalkyl substances. Toxicol Rep 2024; 12:436-447. [PMID: 38645434 PMCID: PMC11033125 DOI: 10.1016/j.toxrep.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used in industrial and consumer applications for ages. The pervasive and persistent nature of PFAS in the environment is a universal concern due to public health risks. Experts acknowledge that exposure to high levels of certain PFAS have consequences, including reduced vaccine efficacy, elevated cholesterol, and increased risk of high blood pressure. While considerable research has been conducted to investigate the presence of PFAS in the environment, the pathways for human exposure through food and food packaging/contact materials (FCM) remain unclear. In this review, we present an exhaustive overview of dietary exposure pathways to PFAS. Also, the mechanism of PFAS migration from FCMs into food and the occurrence of PFAS in certain foods were considered. Further, we present the analytical techniques for PFAS in food and food matrices as well as exposure pathways and human health impacts. Further, recent regulatory actions working to set standards and guidelines for PFAS in food packaging materials were highlighted. Alternative materials being developed and evaluated for their safety and efficacy in food contact applications, offering promising alternatives to PFAS were also considered. Finally, we reported on general considerations and perspectives presently considered.
Collapse
Affiliation(s)
- Chukwuebuka Gabriel Eze
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Biological Environmental and Rural Science Aberystwyth University, Wales, United Kingdom
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Chidiebele Emmanuel Nwankwo
- Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Uttpal Anand
- CytoGene Research & Development LLP, K-51, UPSIDA Industrial Area, Kursi Road (Lucknow), Dist.– Barabanki, 225001, Uttar Pradesh, India
| | - Onyekwere Joseph Okoro
- Department of Zoology and Environment Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Elza Bontempi
- INSTM and INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, Brescia 25123, Italy
| |
Collapse
|
4
|
Hussain A, Kausar T, Siddique T, Kabir K, An QU, Rukhsar F, Gorsi FI, Yaqub S, Kauser S, Rehman A, Najam A, Haroon H, Rafiu A, Korma SA, Mahdi AA. Physiological and biochemical variations of naturally ripened mango (Mangifera Indica L.) with synthetic calcium carbide and ethylene. Sci Rep 2024; 14:2121. [PMID: 38267498 PMCID: PMC10808196 DOI: 10.1038/s41598-024-52483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
To meet the increasing consumer demands for fruits, the implementation of artificial ripening techniques using synthetic chemicals has become increasingly commonplace among less ethical fruit production companies in today's global market. The objective of present work was to establish a difference in the physiological and biochemical and profiles of naturally ripened mangoes vs. those ripened by application of synthetic calcium carbide and ethylene. The application of calcium carbide at 10 g/kg mangoes resulted early ripening in 2 days, with a 3-day shelf life, as compared with 5 and 6 days, for mangoes ripened by ethylene and naturally, respectively. Higher levels of calcium carbide reduced moisture, fiber, protein and carbohydrates content and increased the ash content of mangoes, as compared to higher levels of ethylene, whereas in naturally ripened mangoes the content percentages were 80.21, 3.57, 3.05 6.27 and 4.74, respectively. Artificial ripening resulted in significant loss of ascorbic, citric and malic acid, as values were recorded 35.94, 2.12 and 0.63 mg/g, respectively, in mangoes ripened with 10 g/kg of calcium carbide. However, in naturally ripened mangoes the amounts of these acids were recorded significantly (p < 0.05) high as 52.29, 3.76 and 1.37 mg/g, respectively. There was an increase in total soluble solids (TSS) and reducing sugars, and a decrease in titratable acidity in calcium carbide (10 g/kg) treated mangoes. Elemental analyses revealed high levels of minerals in naturally ripened mangoes, with significant values of iron (0.45 mg/100 g), zinc (0.24 mg/100 g) and copper (0.17 mg/100 g). The organoleptic quality of the fruit decreased significantly (p < 0.05) as a result of the use of calcium carbide. Although use of artificial ripening techniques provides speedy ripening of mangoes, there are obvious limitations. Consequently, natural ripening should be promoted in order to have safer and more nutritious mangoes.
Collapse
Affiliation(s)
- Ashiq Hussain
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan.
- Punjab Food Authority, Lahore, 54000, Punjab, Pakistan.
| | - Tusneem Kausar
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Khurram Kabir
- Punjab Food Authority, Lahore, 54000, Punjab, Pakistan
| | - Qurat Ul An
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farwa Rukhsar
- Department of Food and Nutrition, Minhaj University Lahore, Lahore, 54000, Pakistan
| | - Faiza Iftikhar Gorsi
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Shazia Yaqub
- Punjab Food Authority, Lahore, 54000, Punjab, Pakistan
| | - Samina Kauser
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Abdul Rehman
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Ayesha Najam
- Punjab Food Authority, Lahore, 54000, Punjab, Pakistan
| | - Haseeb Haroon
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Agbaje Rafiu
- Food Processing and Value Addition Programme, Centre for Agricultural Development and Sustainable Environment, Federal University of Agriculture, Abeokuta, Nigeria
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Amer Ali Mahdi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University, Sana'a, Yemen.
| |
Collapse
|
5
|
Haji A, Desalegn K, Hassen H. Selected food items adulteration, their impacts on public health, and detection methods: A review. Food Sci Nutr 2023; 11:7534-7545. [PMID: 38107123 PMCID: PMC10724644 DOI: 10.1002/fsn3.3732] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 12/19/2023] Open
Abstract
Every living thing requires food to survive. Clean, fresh, and healthy foods are important to human health. Today, food is affected by various counterfeits. Adulteration of food is the intentional deterioration of the quality of food offered for sale by either the addition or substitution of an inferior substance or by the omission of a valuable ingredient. Economically motivated adulteration is the intentional adulteration of food for financial gain, and has enormous public health implications, making it an important issue in food science. Almost every food, including milk and dairy products, fats and oils, fruits and vegetables, grain foods, coffee, tea, honey, etc., is susceptible to adulteration. It is difficult to find food that is free from adulteration. Consumption of adulterated food contributes to numerous diseases in society, ranging from mild to life threatening. Therefore, detection of adulteration in food is essential to ensure the safety of the food we consume. To provide consumers with food that is free of adulterants, various detection methods such as physical, chemical, biochemical, and molecular techniques are used to identify adulterants in food. This review aims to provide up-to-date information on food adulteration, its impact on health, and the analytical techniques used to detect adulteration in food.
Collapse
Affiliation(s)
- Abdulmajid Haji
- Department of Post‐Harvest ManagementCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| | - Kasahun Desalegn
- Department of Post‐Harvest ManagementCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| | - Hayat Hassen
- Department of Post‐Harvest ManagementCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| |
Collapse
|
6
|
Okeke ES, Nweze EJ, Ezike TC, Nwuche CO, Ezeorba TPC, Nwankwo CEI. Silicon-based nanoparticles for mitigating the effect of potentially toxic elements and plant stress in agroecosystems: A sustainable pathway towards food security. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165446. [PMID: 37459984 DOI: 10.1016/j.scitotenv.2023.165446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
Due to their size, flexibility, biocompatibility, large surface area, and variable functionality nanoparticles have enormous industrial, agricultural, pharmaceutical and biotechnological applications. This has led to their widespread use in various fields. The advancement of knowledge in this field of research has altered our way of life from medicine to agriculture. One of the rungs of this revolution, which has somewhat reduced the harmful consequences, is nanotechnology. A helpful ingredient for plants, silicon (Si), is well-known for its preventive properties under adverse environmental conditions. Several studies have shown how biogenic silica helps plants recover from biotic and abiotic stressors. The majority of research have demonstrated the benefits of silicon-based nanoparticles (Si-NPs) for plant growth and development, particularly under stressful environments. In order to minimize the release of brine, heavy metals, and radioactive chemicals into water, remove metals, non-metals, and radioactive components, and purify water, silica has also been used in environmental remediation. Potentially toxic elements (PTEs) have become a huge threat to food security through their negative impact on agroecosystem. Si-NPs have the potentials to remove PTEs from agroecosystem and promote food security via the promotion of plant growth and development. In this review, we have outlined the various sources and ecotoxicological consequences of PTEs in agroecosystems. The potentials of Si-NPs in mitigating PTEs were extensively discussed and other applications of Si-NPs in agriculture to foster food security were also highlighted.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Charles Ogugua Nwuche
- Department of Microbiology, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, B15 2TT Edgbaston, United Kingdom.
| | - Chidiebele Emmanuel Ikechukwu Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
7
|
Sanches TR, Andrade L. Substance used in the ripening of fruits can cause kidney damage and water and electrolytic disorders. J Bras Nefrol 2023; 45:387-388. [PMID: 37930144 PMCID: PMC10726668 DOI: 10.1590/2175-8239-jbn-2023-e009en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Talita Rojas Sanches
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Clínica Médica, Laboratório de Investigação Médica 12, São Paulo, SP, Brazil
| | - Lúcia Andrade
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Clínica Médica, Laboratório de Investigação Médica 12, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Luo M, Wu Z, Xu T, Ding Y, Qian X, Okeke ES, Mao G, Chen Y, Feng W, Wu X. The neurotoxicity and mechanism of TBBPA-DHEE exposure in mature zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109572. [PMID: 36828348 DOI: 10.1016/j.cbpc.2023.109572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/13/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023]
Abstract
Tetrabromobisphenol A-bis (2-hydroxyethyl) ether (TBBPA-DHEE) has been detected in various environmental media and organisms, and its ecological risks and health hazards have attracted great attention, but sufficient toxicological data have not proved the toxic effects of TBBPA-DHEE exposure on aquatic organism. In this study, the neurotoxicity and mechanism of zebrafish (3-month-old) exposed to TBBPA-DHEE (0.86 μg/L, 12.9 μg/L, 193.5 μg/L) were studied. Furthermore, the neurotoxicity susceptibility of different sexes of zebrafish was revealed. Behavioral studies revealed that TBBPA-DHEE exposure has significant differences in average speed, duration of mania, the distance between objects, and ATP content between male and female zebrafish. Slight damage in brain tissue of male zebrafish was found. The transcriptome analysis revealed that the molecular mechanism of neurotoxicity in mature female and male zebrafish is different. For mature female zebrafish, TBBPA-DHEE significantly affected the expression of genes related to behavior and development, and its mechanism may be that it can produce neurotoxicity by affecting related genes in the hormone, synapse, and Ca2+ signaling pathway. For mature male zebrafish, TBBPA-DHEE can significantly affect their behavior and expression of nerve-related genes. Results from the transcriptomic analysis suggests that the possible molecular mechanism may be through the inhibition of Ca2+ signal transmission and produce neurotoxicity by affecting the expression of related genes in neural synapses, Ca2+ signal, and MAPK signal in brain tissue of zebrafish. The results suggested that exposure to low-dose TBBPA-DHEE could induce neurotoxicity in zebrafish, and female and male zebrafish showed different toxic effects and molecular mechanisms.
Collapse
Affiliation(s)
- Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhaoqiong Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Tong Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yangyang Ding
- Laboratory animal research center, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
9
|
Ezugwu AL, Anaduaka EG, Chibuogwu CC, Ezeorba TPC. Meat tenderization using acetaminophen (paracetamol/APAP): A review on deductive biochemical mechanisms, toxicological implications and strategies for mitigation. Heliyon 2023; 9:e15628. [PMID: 37159697 PMCID: PMC10163616 DOI: 10.1016/j.heliyon.2023.e15628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Meats consist of edible portions originating from domestic and wild animals. Meat's palatability and sensory accessibility largely depend on its tenderness to consumers. Although many factors influence meat tenderness, the cooking method cannot be neglected. Different chemical, mechanical, and natural means of meat tenderization have been considered healthy and safe for consumers. However, many households, food vendors, and bars in developing countries engage in the unhealthy use of acetaminophen (paracetamol/APAP) in meat tenderization due to the cost reduction it offers in the overall cooking process. Acetaminophen (paracetamol/APAP) is one of the most popular, relatively cheap, and ubiquitous over-the-counter drugs that induce serious toxicity challenges when misused. It is important to note that acetaminophen during cooking is hydrolyses into a toxic compound known as 4-aminophenol, which damages the liver and kidney and results in organ failure. Despite the reports on the increase in the use of acetaminophen for meat tenderizing in many web reports, there have not been any serious scientific publications on this subject. This study adopted classical/traditional methodology to review relevant literature retrieved from Scopus, PubMed, and ScienceDirect using relevant key terms (Acetaminophen, Toxicity, Meat tenderization, APAP, paracetamol, mechanisms) and Boolean operators (AND and OR). This paper provides in-depth information on the hazard and health implications of consuming acetaminophen tenderized meat via genetic and metabolic pathways deductions. Understanding these unsafe practices will promote awareness and mitigation strategies.
Collapse
Affiliation(s)
- Arinze Linus Ezugwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Christian Chiazor Chibuogwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Corresponding author. Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
| |
Collapse
|
10
|
Anaduaka EG, Uchendu NO, Asomadu RO, Ezugwu AL, Okeke ES, Chidike Ezeorba TP. Widespread use of toxic agrochemicals and pesticides for agricultural products storage in Africa and developing countries: Possible panacea for ecotoxicology and health implications. Heliyon 2023; 9:e15173. [PMID: 37113785 PMCID: PMC10126862 DOI: 10.1016/j.heliyon.2023.e15173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Chemicals used for storage majorly possess insecticidal activities - deterring destructive insect pests and microorganisms from stored agricultural produce. Despite the controversy about their safety, local farmers and agro-wholesalers still predominantly use these chemicals in developing countries, especially Africa, to ensure an all-year supply of agriproducts. These chemicals could have short- or long-term effects. Despite the state-of-the-art knowledge, factors such as poor education and awareness, limited agricultural subventions, quests for cheap chemicals, over-dosage, and many more are the possible reasons for these toxic chemicals' setback and persistent use in developing countries. This paper provides an up-to-date review of the environmental and ecological effects, as well as the health impacts arising from the indiscriminate use of toxic chemicals in agriproducts. Existing data link pesticides to endocrine disruption, genetic mutations, neurological dysfunction, and other metabolic disorders, apart from the myriad of acute effects. Finally, this study recommended several naturally sourced preservatives as viable alternatives to chemical counterparts and emphasized the invaluable role of education and awareness programs in mitigating the use in developing nations for a sustainable society.
Collapse
Affiliation(s)
- Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Nene Orizu Uchendu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Arinze Linus Ezugwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Corresponding author. Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria.
| |
Collapse
|
11
|
Ouma PA, Mwaeni VK, Amwayi PW, Isaac AO, Nyariki JN. Calcium carbide-induced derangement of hematopoiesis and organ toxicity ameliorated by cyanocobalamin in a mouse model. Lab Anim Res 2022; 38:26. [PMID: 35962424 PMCID: PMC9373447 DOI: 10.1186/s42826-022-00136-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Calcium carbide (CaC2) is a chemical primarily used in the production of acetylene gas. The misuse of CaC2 to induce fruit ripening is a global challenge with a potential adverse effects to human health. Additionally, CaC2 is known to contain some reasonable amount of arsenic and phosphorous compounds that are toxic and pose a danger to human health when ingested. The current study sought to characterize CaC2 toxicity and elucidate any protective effects by cyanocobalamin (vitamin B12), a well-established antioxidant and anti-inflammatory bio-molecule. Female Swiss white mice were randomly assigned into three groups; the first group was the control, while the second group was administered with CaC2. The third group received CaC2 followed by administration of vitamin B12. The mice were sacrificed at 60 days post treatment, hematological, biochemical, glutathione assay, cytokine ELISA and standard histopathology was performed. Results CaC2 administration did not significantly alter the mice body weight. CaC2 administration resulted in a significant decrease in packed cell volume (PCV), hemoglobin (Hb), red blood cells (RBCs) and RBC indices; indicative of CaC2-driven normochromic microcytic anaemia. Further analysis showed CaC2-driven leukopenia. Evidently, vitamin B12 blocked CaC2-driven suppression of PCV, Hb, RBCs and WBCs. Monocytes and neutrophils were significantly up-regulated by CaC2. CaC2-induced elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and bilirubin signaled significant liver damage. Notably, vitamin B12 stabilized AST, ALT and bilirubin in the presence of CaC2, an indication of a protective effect. Histopathological analysis depicted that vitamin B12 ameliorated CaC2-driven liver and kidney injury. CaC2 resulted in the depletion of glutathione (GSH) levels in the liver; while in the brain, kidney and lungs, the GSH levels were elevated. CaC2 administration resulted in elevation of pro-inflammatory cytokines TNF-α and IFN-γ. Vitamin B12 assuaged the CaC2-induced elevation of these pro-inflammatory cytokines. Conclusions These findings demonstrate for the first time that oral supplementation with vitamin B12 can protect mice against CaC2-mediated toxicity, inflammation and oxidative stress. The findings provide vital tools for forensic and diagnostic indicators for harmful CaC2 exposure; while providing useful insights into how vitamin B12 can be explored further as an adjunct therapy for CaC2 toxicity.
Collapse
Affiliation(s)
- Pherah A Ouma
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - Victoria K Mwaeni
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - Peris W Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, School of Health Sciences and Technology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya.
| |
Collapse
|