1
|
Sola-Leyva A, Romero B, Canha-Gouveia A, Pérez-Prieto I, Molina NM, Vargas E, Mozas-Moreno J, Chamorro C, Saare M, Salumets A, Altmäe S. Uterus didelphys: the first case report on molecular profiling of endometrial tissue from both uterine cavities. Reprod Biol Endocrinol 2025; 23:1. [PMID: 39755646 PMCID: PMC11699791 DOI: 10.1186/s12958-024-01330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND A didelphic uterus represents a unique and infrequent congenital condition in which a woman possesses two distinct uteri, each with its own cervix. This anomaly arises due to partial or incomplete merging of the Müllerian ducts during the developmental stages in the womb. Accounting for uterine malformations, a didelphic uterus is a relatively rare condition, affecting approximately 0.5-2% of the population and is considered one of the more uncommon types of uterine abnormalities. METHODS This case report aims to study the physical separation in uterine didelphys and its impact on endometrial microbiome and inflammation, and the patterns of endometrial receptivity observed. RESULTS Endometrial receptivity analyses revealed a similar receptive state in both uteri, both in the early receptive phase. Differential markers of chronic endometritis, including CD138, and MUM1-positive cells, were observed when comparing endometrial biopsies from both uteri. The right uterus exhibited a higher prevalence of these positive cells. Regarding the microbiome, significant differences were found between the uteri, notably in the right uterus, a clear non-dominance of lactobacilli and the presence of genera such as Staphylococcus, Streptococcus, and Acinetobacter. Additionally, the right uterus presented a less 'favourable' microenvironment, a characteristic that was also reflected in the right cervix; both sites presenting less lactobacilli than the left side samples. A distinct metabolomic signature associated with the physical separation of the uteri contributed to the differences in endometrial milieu. CONCLUSIONS Our study revealed that physical separation, among other factors in uterus didelphys, affects the endometrial microbiome, metabolome, and inflammatory state, with significant microbiome variation observed between the uteri, although similar endometrial receptivity patterns were noted.
Collapse
Affiliation(s)
- Alberto Sola-Leyva
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, 14183, Sweden.
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, 14183, Sweden.
- Celvia CC, Competence Centre on Health Technologies, Tartu, 50411, Estonia.
| | - Bárbara Romero
- Reproduction Unit, UGC Obstetrics and Gynaecology, University Hospital Virgen de las Nieves, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Analuce Canha-Gouveia
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, 30100, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, 18071, Spain
| | - Inmaculada Pérez-Prieto
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, 18071, Spain
| | - Nerea M Molina
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, 18071, Spain
| | - Eva Vargas
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, 18071, Spain
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, 23071, Spain
| | - Juan Mozas-Moreno
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), Madrid, 28029, Spain
| | - Clara Chamorro
- Unidad Provincial de Anatomía Patológica, Hospital Virgen de las Nieves, Granada, 18014, Spain
| | - Merli Saare
- Celvia CC, Competence Centre on Health Technologies, Tartu, 50411, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, 51014, Estonia
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, 14183, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, 14183, Sweden
- Celvia CC, Competence Centre on Health Technologies, Tartu, 50411, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, 51014, Estonia
| | - Signe Altmäe
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, 14183, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, 14183, Sweden
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, 18071, Spain
| |
Collapse
|
2
|
Tang X, Geng Y, Gao R, Chen Z, Mu X, Zhang Y, Yin X, Ma Y, Chen X, Li F, He J. Maternal exposure to beta-Cypermethrin disrupts placental development by dysfunction of trophoblast cells from oxidative stress. Toxicology 2024; 504:153796. [PMID: 38582279 DOI: 10.1016/j.tox.2024.153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
As a broad-spectrum and efficient insecticide, beta-Cypermethrin (β-CYP) poses a health risk to pregnancy. It matters the mechanisms of maternal exposure to β-CYP for impacting reproductive health. The placenta, a transient organ pivotal for maternal-fetal communication during pregnancy, plays a crucial role in embryonic development. The effect of β-CYP exposure on the placenta and its underlying molecular mechanisms remain obscure. The objective of this study was to investigate the effect of β-CYP exposure on placental development and the function of trophoblast, as well as the underlying mechanisms through CD-1 mouse model (1, 10, 20 mg/kg.bw) and in vitro HTR-8/SVneo cell model (12.5, 25, 50, 100 μM). We found slower weight gain and reduced uterine wet weight in pregnant mice with maternal exposure to β-CYP during pregnancy, as well as adverse pregnancy outcomes such as uterine bleeding and embryo resorption. The abnormal placental development in response to β-CYP was noticed, including imbalanced placental structure and disrupted labyrinthine vascular development. Trophoblasts, pivotal in placental development and vascular remodeling, displayed abnormal differentiation under β-CYP exposure. This aberration was characterized by thickened trophoblast layers in the labyrinthine zone, accompanied by mitochondrial and endoplasmic reticulum swelling within trophoblasts. Further researches on human chorionic trophoblast cell lines revealed that β-CYP exposure induced apoptosis in HTR-8/SVneo cells. This induction resulted in a notable decrease in migration and invasion abilities, coupled with oxidative stress and the inhibition of the Notch signaling pathway. N-acetylcysteine (an antioxidant) partially restored the impaired Notch signaling pathway in HTR-8/SVneo cells, and mitigated cellular functional damage attributed to β-CYP exposure. Collectively, exposure to β-CYP induced oxidative stress and then led to inhibition of the Notch signaling pathway and dysfunction of trophoblast cells, ultimately resulted in abnormal placenta and pregnancy. These findings indicate Reactive Oxygen Species as potential intervention targets to mitigate β-CYP toxicity. The comprehensive elucidation contributes to our understanding of β-CYP biosafety and offers an experimental basis for preventing and managing its reproductive toxicity.
Collapse
Affiliation(s)
- Xiaoli Tang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Zhuxiu Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xin Yin
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yidan Ma
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Sahraeian S, Abbaszadeh HA, Taheripanah R, Edalatmanesh MA, Keshavarzi S, Ghazifard A. Exosome Therapy and Photobiomodulation Therapy Regulate mi-RNA 21, 155 Expressions, Nucleus Acetylation and Glutathione in a Polycystic Ovary Oocyte: An In Vitro Study. J Lasers Med Sci 2024; 15:e10. [PMID: 39051004 PMCID: PMC11267104 DOI: 10.34172/jlms.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/21/2024] [Indexed: 07/27/2024]
Abstract
Introduction: Polycystic ovary syndrome (PCOS) is a complex condition that can have various symptoms and complications, one of which is infertility. Dysregulation of miRNA has been associated with the pathogenesis of numerous illnesses such as PCOS. In this study, we evaluated the effect of photobiomodulation therapy (PBMT) and exosome therapy (EXO) on the regulation of miRNA and nucleus acetylation in a PCOS oocyte. Methods: In this research, 36 oocytes divided into three groups: control, EXO, and PBM (Wavelength of 640 nm). Subsequently, in-vitro maturation (IVM) was evaluated. Real-time PCR was used to evaluate miRNA-21,16,19,24,30,106,155 and GAPDH. Afterward, oocyte glutathione (GSH) and nucleus acetylation were measured by H4K12. Results: The expression of the miR-16, miRNA-19, miRNA-24, miRNA-106 and miRNA-155 genes in the EXO and PBMT groups was significantly down-regulated in comparison to the control group, but the expression of miRNA-21 and miR-30 significantly increased in the EXO and PBMT groups in comparison to the control group. The EXO and PBMT significantly increased GSH and nucleus acetylation (P<0.0001). Conclusion: The results of this study showed that the use of EXO and PBMT can improve GSH and nucleus acetylation in the PCOS oocyte and also change the expression of miRNAs.
Collapse
Affiliation(s)
- Samira Sahraeian
- Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Robabeh Taheripanah
- Department of Obstetrics and Gynecology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Keshavarzi
- Infertility Clinic, Erfan Niayesh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alaleh Ghazifard
- Infertility Clinic, Erfan Niayesh Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kumar A, Jasrotia S, Dutta J, Kyzas GZ. Pyrethroids toxicity in vertebrates and invertebrates and amelioration by bioactive compounds: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105615. [PMID: 37945252 DOI: 10.1016/j.pestbp.2023.105615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023]
Abstract
Generations of different synthetic pesticides have been launched over time to maintain balance between production and consumption of the agricultural yield, control various disease programmes, store grains, etc. Pyrethroids, which are supposed to be non-toxic, have been excessively implemented and have contaminated soil and water bodies. Thus, pyrethroids cause severe and dreadful pernicious effects on various life forms residing in soil, air, and water. Various obnoxious effects of pyrethroids have been analyzed in the vertebrate and invertebrate systems of the animal kingdom. Pyrethroids, namely, Cypermethrin, Deltamethrin, Beta-cyfluthrin, Esfenvalerate, Fenvalerate, and Bifenthrin, have set out various types of degenerative and toxic impacts that include oxidative stress, hepatotoxicity, immunotoxicity involving thymic and splenic toxicity, neurotoxicity, nephrotoxicity, foetal toxicity, alterations in serum calcium and phosphate levels, cerebral and bone marrow degeneration, degeneration of the reproductive system, histological alteration, and DNA damage. Bioactive compounds like Diosmin, Curcumin, Rutin, Spirulina platensis, sesame oil, Naringin, Allicin, Piperine, alpha-lipoic acid, alpha-tocopherol, Cyperus rotundus L. tuber extract, herbal syrup from chicory and artichoke leaves, green tea extract, Quercetin, Trans-ferulic acid, Ascorbic acid, Propolis, ethanolic extract of grape pomace, and Melatonin have been reported to sublime the toxic effects of these pesticides. The expanding harmfulness of pesticides is a real and demanding issue that needs to be overcome, and bioactive compounds have been shown to reduce the toxicity in vivo as well as in vitro.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| | - Shailja Jasrotia
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| |
Collapse
|