1
|
Pilon GD, Farias-de-França AP, Cantuária NM, Silva MG, Leão-Torres AG, Floriano RS, dos Santos MG, da Silva NJ, Gerlach OMS, Cechinel-Filho V, Oshima-Franco Y. The Protective Action of Coutarea hexandra (Rubiaceae) on the Neuromuscular Blockade Induced by Lachesis muta muta (Viperidae: Crotalinae) Venom. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4714510. [PMID: 39584046 PMCID: PMC11584258 DOI: 10.1155/2024/4714510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Envenomations by snakes represent a neglected health problem in tropical and subtropical countries. In South America, Lachesis muta occasionally causes severe human envenomation, with treatment being conditioned to an unspecific antivenom. In this work, we examined the neutralizing ability of Coutarea hexandra stem bark hydroalcoholic extract (Ch-E), including the commercial phytochemicals coumarin and quinine, on the neuromuscular blockade induced by L. m. muta venom in mouse phrenic nerve-diaphragm preparation. Biological assays were performed following conventional myographic technique ex vivo. Ch-E was phytochemically characterized to detect the presence of coumarin and quinine using analytical methods. Ch-E and commercial phytochemicals were tested separately or combined under pre- and post-venom incubation protocols. Ch-E attenuated the venom-induced neuromuscular blockade only under the pre-venom incubation protocol. Quinine was not detected in Ch-E. Commercial coumarin and quinine exhibited a concentration-dependent counteracting effect on the venom-induced neuromuscular blockade. The pre-venom incubation protocol showed to be efficient in attenuating the L. m. muta venom-induced neuromuscular blockade, most likely due to the presence of coumarin derivatives and unknown alkaloids in this extract.
Collapse
Affiliation(s)
- Grazielle D. Pilon
- Biomedicine Course, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | | | | | - Magali G. Silva
- Pharmacy Course, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Aline G. Leão-Torres
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Rafael S. Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Marcio G. dos Santos
- Graduate Program in Environmental Sciences, Tocantins Federal University (UFT), Palmas, Tocantins, Brazil
| | - Nelson Jorge da Silva
- Graduate Program in Environmental Sciences and Health, School of Medical and Life Sciences, Pontifical Catholic University of Goiás (PUC Goiás), Goiânia, Goias, Brazil
| | - Otto M. S. Gerlach
- Graduate Program in Pharmaceutical Sciences and Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Valdir Cechinel-Filho
- Graduate Program in Pharmaceutical Sciences and Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Yoko Oshima-Franco
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| |
Collapse
|
2
|
Galizio NC, Moraes-Santos LS, Yabunaka AC, Demico PJ, Torres-Bonilla KA, Varón JCG, Silva NJD, Tanaka-Azevedo AM, Rocha MMTD, Hyslop S, Floriano RS, Morais-Zani KD. Biochemical and toxicological profiles of venoms from an adult female South American bushmaster (Lachesis muta rhombeata) and her offspring. Toxicon 2024; 241:107680. [PMID: 38452976 DOI: 10.1016/j.toxicon.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
In this work, we compared the biochemical and toxicological profiles of venoms from an adult female specimen of Lachesis muta rhombeata (South American bushmaster) and her seven offspring born in captivity, based on SDS-PAGE, RP-HPLC, enzymatic, coagulant, and hemorrhagic assays. Although adult and juvenile venoms showed comparable SDS-PAGE profiles, juveniles lacked some chromatographic peaks compared with adult venom. Adult venom had higher proteolytic (caseinolytic) activity than juvenile venoms (p < 0.05), but there were no significant inter-venom variations in the esterase, PLA2, phosphodiesterase and L-amino acid oxidase (LAAO) activities, although the latter activity was highly variable among the venoms. Juveniles displayed higher coagulant activity on human plasma, with a minimum coagulant dose ∼42% lower than the adult venom (p < 0.05), but there were no age-related differences in thrombin-like activity. Adult venom was more fibrinogenolytic (based on the rate of fibrinogen chain degradation) and hemorrhagic than juvenile venoms (p < 0.05). The effective dose of Bothrops/Lachesis antivenom (produced by the Instituto Butantan) needed to neutralize the coagulant activity was ∼57% greater for juvenile venoms (p < 0.05), whereas antivenom did not attenuate the thrombin-like activity of juvenile and adult venoms. Antivenom significantly reduced the hemorrhagic activity of adult venom (400 μg/kg, i. d.), but not that of juvenile venoms. Overall, these data indicate a compositional and functional ontogenetic shift in L. m. rhombeata venom.
Collapse
Affiliation(s)
- Nathália C Galizio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP, Brazil; Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil; Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Laura S Moraes-Santos
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Ana C Yabunaka
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Poliana J Demico
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Kristian A Torres-Bonilla
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Julian C G Varón
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nelson J da Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás (PUC-GO), Goiânia, GO, Brazil
| | - Anita M Tanaka-Azevedo
- Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil; Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Marisa M Teixeira da Rocha
- Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Karen de Morais-Zani
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP, Brazil; Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil; Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Franco-Vásquez AM, Lazcano-Pérez F, Mejía-Sánchez MA, Corzo G, Zamudio F, Carbajal-Saucedo A, Román-González SA, Gómez-Manzo S, Arreguín-Espinosa R. Structural, biochemical and immunochemical characterization of an acidic phospholipase A2 from Lachesis acrochorda (Viperidae: Crotalinae) venom. Toxicon 2024; 237:107528. [PMID: 38013057 DOI: 10.1016/j.toxicon.2023.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Viperids of the genus Lachesis, also known as bushmasters, are capable of injecting great amounts of venom that cause severe envenomation incidents. Since phospholipases type A2 are mainly involved in edema and myonecrosis within the snakebite sites, in this work, the isolation, amino acid sequence and biochemical characterization of the first phospholipase type A2 from the venom of Lachesis acrochorda, named Lacro_PLA2, is described. Lacro_PLA2 is an acidic aspartic 49 calcium-dependent phospholipase A2 with 93% similarity to the L. stenophrys phospholipase. Lacro_PLA2 has a molecular mass of 13,969.7 Da and an experimental isoelectric point around 5.3. A combination of N-terminal Edman degradation and MS/MS spectrometry analyses revealed that Lacro_PLA2 contains 122 residues including 14 cysteines that form 7 disulfide bridges. A predicted 3D model shows a high resemblance to other viperid phospholipases. Nevertheless, immunochemical and phospholipase neutralization tests revealed a notorious level of immunorecognition of the isolated protein by two polyclonal antibodies from viperids from different genus, which suggest that Lacro_PLA2 resembles more to bothropic phospholipases. Lacro_PLA2 also showed significantly high edema activity when was injected into mice; so, it could be an alternative antigen in the development of antibodies against toxins of this group of viperids, seeking to improve commercial polyclonal antivenoms.
Collapse
Affiliation(s)
- Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, Mexico
| | - Fernando Lazcano-Pérez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, Mexico
| | - Miguel Angel Mejía-Sánchez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca, 62210, Mexico
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca, 62210, Mexico
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca, 62210, Mexico
| | - Alejandro Carbajal-Saucedo
- Laboratorio de Herpetología. Universidad Autónoma de Nuevo León, C.P. 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Sergio Agustín Román-González
- Unidad de Proteómica, Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur 4809, Col. Arenal Tepepan, Tlalpan, Ciudad de México, 14610, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
4
|
Konrath EL, Strauch I, Boeff DD, Arbo MD. The potential of Brazilian native plant species used in the therapy for snakebites: A literature review. Toxicon 2022; 217:17-40. [PMID: 35952835 DOI: 10.1016/j.toxicon.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
Abstract
Snakebite envenoming is a potentially fatal disease categorized as a neglected public health issue for not receiving the appropriate attention from national and international health authorities. The most affected people by this problem usually live in poor rural communities, where medical resources are often sparse and, in some instances, there is even a scarcity of serum therapy. The administration of the appropriate antivenom is the only specific treatment available, however it has limited efficacy against venom-induced local effects. In this scenario, various plant species are used as local first aid for the treatment of snakebite accidents in Brazil, and some of them can effectively inhibit lethality, neurotoxicity, hemorrhage, and venom enzymes activities. This review compiles a list of plants used in the treatment of snakebites in Brazil, focusing on the native Brazilian species registered in the databases Pubmed, Scielo, Scopus and Google Scholar. All these searches were limited to peer-reviewed journals written in English, with the exception of a few articles written in Portuguese. The most cited native plant species were Casearia sylvestris Sw., Eclipta prostrata (L.) L., Mikania glomerata Spreng., Schizolobium parahyba (Vell.) S.F.Blake and Dipteryx alata Vogel, all used to decrease the severity of toxic signs, inhibit proteolytic and hemorrhagic activities, thus increasing survival time and neutralizing myotoxicity effects. Different active compounds showing important activity against the snake venoms and their toxins include flavonoids, alkaloids and tannins. Although some limitations to the experimental studies with medicinal plants were observed, including lack of comparison with control drugs and unknown active extracts compounds, species with anti-venom characteristics are effective and considered as candidates for the development of adjuvants in the treatment of snake envenomation. Further studies on the chemistry and pharmacology of traditionally used plant species will help to understand the role that snakebite herbal remedies may display in local medical health systems. It might also contribute to the development of alternative or complementary treatments to reduce the number of severe disabilities and deaths.
Collapse
Affiliation(s)
- Eduardo Luis Konrath
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil.
| | - Iara Strauch
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90620-170, Porto Alegre, RS, Brazil
| | - Daiana Daniele Boeff
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90620-170, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Silva A, Hodgson WC, Tasoulis T, Isbister GK. Rodent Lethality Models Are Problematic for Evaluating Antivenoms for Human Envenoming. Front Pharmacol 2022; 13:830384. [PMID: 35185582 PMCID: PMC8850383 DOI: 10.3389/fphar.2022.830384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anjana Silva
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
- Monash Venom Group, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
| | - Wayne C. Hodgson
- Monash Venom Group, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Theo Tasoulis
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| | - Geoffrey K. Isbister
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
- *Correspondence: Geoffrey K. Isbister,
| |
Collapse
|
6
|
Gutierres PG, Pereira DR, Vieira NL, Arantes LF, Silva NJ, Torres-Bonilla KA, Hyslop S, Morais-Zani K, Nogueira RMB, Rowan EG, Floriano RS. Action of Varespladib (LY-315920), a Phospholipase A 2 Inhibitor, on the Enzymatic, Coagulant and Haemorrhagic Activities of Lachesis muta rhombeata (South-American Bushmaster) Venom. Front Pharmacol 2022; 12:812295. [PMID: 35095526 PMCID: PMC8790531 DOI: 10.3389/fphar.2021.812295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Varespladib (VPL) was primarily developed to treat inflammatory disturbances associated with high levels of serum phospholipase A2 (PLA2). VPL has also demonstrated to be a potential antivenom support agent to prevent PLA2-dependent effects produced by snake venoms. In this study, we examined the action of VPL on the coagulant, haemorrhagic and enzymatic activities of Lachesis muta rhombeata (South-American bushmaster) venom. Conventional colorimetric enzymatic assays were performed for PLA2, caseinolytic and esterasic activities; in vitro coagulant activities for prothrombin time (PT) and activated partial thromboplastin time (aPTT) were performed in rat citrated plasma through a quick timer coagulometer, whereas the dimensions of haemorrhagic haloes obtained after i.d. injections of venom in Wistar rats were determined using ImageJ software. Venom (1 mg/ml) exhibited accentuated enzymatic activities for proteases and PLA2in vitro, with VPL abolishing the PLA2 activity from 0.01 mM; VPL did not affect caseinolytic and esterasic activities at any tested concentrations (0.001–1 mM). In rat citrated plasma in vitro, VPL (1 mM) alone efficiently prevented the venom (1 mg/ml)-induced procoagulant disorder associated to extrinsic (PT) pathway, whereas its association with a commercial antivenom successfully prevented changes in both intrinsic (aPTT) and extrinsic (PT) pathways; commercial antivenom by itself failed to avoid the procoagulant disorders by this venom. Venom (0.5 mg/kg)-induced hemorrhagic activity was slightly reduced by VPL (1 mM) alone or combined with antivenom (antivenom:venom ratio 1:3 ‘v/w’) in rats, with antivenom alone producing no protective action on this parameter. In conclusion, VPL does not inhibit other major enzymatic groups of L. m. rhombeata venom, with its high PLA2 antagonize activity efficaciously preventing the venom-induced coagulation disturbances.
Collapse
Affiliation(s)
- Pamella G Gutierres
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Diego R Pereira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Nataly L Vieira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Lilian F Arantes
- Graduate Program in Zootechnics, Rural Federal University of Pernambuco, Recife, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Kristian A Torres-Bonilla
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Rosa M B Nogueira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| |
Collapse
|
7
|
Leão-Torres AG, Pires CV, Ribelato AC, Zerbinatti MC, Santarém CL, Nogueira RMB, Giometti IC, Giuffrida R, Silva EO, Gerez JR, Silva NJ, Rowan EG, Floriano RS. Protective action of N-acetyl-L-cysteine associated with a polyvalent antivenom on the envenomation induced by Lachesis muta muta (South American bushmaster) in rats. Toxicon 2021; 198:36-47. [PMID: 33915137 DOI: 10.1016/j.toxicon.2021.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
In this study, we examined the potential use of N-acetyl-L-cysteine (NAC) in association with a polyvalent antivenom and as stand-alone therapy to reduce the acute local and systemic effects induced by Lachesis muta muta venom in rats. Male Wistar rats (300-350 g) were exposed to L. m. muta venom (1.5 mg/kg - i.m.) and subsequently treated with anti-Bothrops/Lachesis serum (antivenom:venom ratio 1:3 'v/w' - i.p.) and NAC (150 mg/kg - i.p.) separately or in association; the animals were monitored for 120 min to assess changes in temperature, locomotor activity, local oedema formation and the prevalence of haemorrhaging. After this time, animals were anesthetized in order to collect blood samples through intracardiac puncture and then euthanized for collecting tissue samples; the hematological-biochemical and histopathological analyses were performed through conventional methods. L. m. muta venom produced pronounced local oedema, subcutaneous haemorrhage and myonecrosis, with both antivenom and NAC successfully reducing the extent of the myonecrotic lesion when individually administered; their association also prevented the occurrence of subcutaneous haemorrhage. Venom-induced creatine kinase (CK) release was significantly prevented by NAC alone or in combination with antivenom; NAC alone failed to reduce the release of hepatotoxic (alanine aminotransferase) and nephrotoxic (creatinine) serum biomarkers induced by L. m. muta venom. Venom induced significant increase of leucocytes which was also associated with an increase of neutrophils, eosinophils and monocytes; antivenom and NAC partially reduced these alterations, with NAC alone significantly preventing the increase of eosinophils whereas neither NAC or antivenom prevented the increase in monocytes. Venom did not induce changes in the erythrogram parameters. In the absence of a suitable antivenom, NAC has the potential to reduce a number of local and systemic effects caused by L. m. muta venom.
Collapse
Affiliation(s)
- Aline G Leão-Torres
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Carina V Pires
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Amanda C Ribelato
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Maria C Zerbinatti
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Cecília L Santarém
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Rosa M B Nogueira
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Inês C Giometti
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Rogério Giuffrida
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Elisangela O Silva
- Laboratory of Pathological Anatomy, Veterinary Hospital, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Juliana R Gerez
- Department of Histology, State University of Londrina, Rodovia Celso Garcia Cid Km 380, 86057-970, Londrina, PR, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás (PUC Goiás), Rua 232, 128, 74605-140, Goiânia, GO, Brazil
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE, Glasgow, UK
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil.
| |
Collapse
|