1
|
Hydrocortisone for Preventing Adverse Drug Reactions to Snake Antivenom: A Meta-Analysis. Emerg Med Int 2022; 2022:6151206. [PMID: 35498377 PMCID: PMC9054406 DOI: 10.1155/2022/6151206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Pretreatment with hydrocortisone (prehydrocortisone) has been used to protect against adverse drug reactions (ADRs) following antivenom administration after snakebite. However, controversial results have been reported in studies evaluating its efficacy. Herein, we conducted a meta-analysis to evaluate the effect of prehydrocortisone on the risk of ADRs. Methods We conducted a systematic search of PubMed, Embase, and Cochrane for relevant studies on the literature published up to December 6, 2020, with no language restrictions. Premedications, including hydrocortisone with or without other drugs, were compared with placebo or no premedication. Our primary end point was the risk of ADRs, which was reported as the number of patients who developed ADRs divided by the total number of snakebite patients administered with antivenom separately for the prehydrocortisone and control groups for each study. We evaluated pooled data using of a random-effects model. Results Among 831 identified studies, 4 were eligible and included in our analysis (N = 1348 participants). Upon combining all eight comparisons from the four selected studies, the overall pooled odds ratio (OR) for ADRs was 0.47 (95% CI 0.19, 1.17; p=0.11; I2 = 68%). When the analysis was restricted to only articles using hydrocortisone with other drugs, the pooled OR was 0.19 (95% CI 0.05, 0.75; p=0.02; I2 = 55%). The result was not statistically significant when the analysis was restricted to studies using prehydrocortisone alone, or randomized controlled designs, or cohorts. Our study was limited by heterogeneity, quality, and a paucity of data. Conclusions The findings in this study revealed that prehydrocortisone alone was ineffective. However, the substantial beneficial effect of prehydrocortisone combinations with premedications (injectable antihistamines or adrenaline) used against ADRs cannot be excluded. Therefore, the use of prehydrocortisone combinations with premedications (injectable antihistamines or adrenaline) as a prophylaxis may reduce the ADRs to antivenom.
Collapse
|
2
|
Li X, Ma Q, Yin J, Zheng Y, Chen R, Chen Y, Li T, Wang Y, Yang K, Zhang H, Tang Y, Chen Y, Dong H, Gu Q, Guo D, Hu X, Xie L, Li B, Li Y, Lin T, Liu F, Liu Z, Lyu L, Mei Q, Shao J, Xin H, Yang F, Yang H, Yang W, Yao X, Yu C, Zhan S, Zhang G, Wang M, Zhu Z, Zhou B, Gu J, Xian M, Lyu Y, Li Z, Zheng H, Cui C, Deng S, Huang C, Li L, Liu P, Men P, Shao C, Wang S, Ma X, Wang Q, Zhai S. A Clinical Practice Guideline for the Emergency Management of Anaphylaxis (2020). Front Pharmacol 2022; 13:845689. [PMID: 35418863 PMCID: PMC8996305 DOI: 10.3389/fphar.2022.845689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: For anaphylaxis, a life-threatening allergic reaction, the incidence rate was presented to have increased from the beginning of the 21st century. Underdiagnosis and undertreatment of anaphylaxis are public health concerns. Objective: This guideline aimed to provide high-quality and evidence-based recommendations for the emergency management of anaphylaxis. Method: The panel of health professionals from fifteen medical areas selected twenty-five clinical questions and formulated the recommendations with the supervision of four methodologists. We collected evidence by conducting systematic literature retrieval and using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. Results: This guideline made twenty-five recommendations that covered the diagnosis, preparation, emergency treatment, and post-emergency management of anaphylaxis. We recommended the use of a set of adapted diagnostic criteria from the American National Institute of Allergy and Infectious Diseases and the Food Allergy and Anaphylaxis Network (NIAID/FAAN), and developed a severity grading system that classified anaphylaxis into four grades. We recommended epinephrine as the first-line treatment, with specific doses and routes of administration for different severity of anaphylaxis or different conditions. Proper dosage is critical in the administration of epinephrine, and the monitor is important in the IV administration. Though there was only very low or low-quality evidence supported the use of glucocorticoids and H1 antagonists, we still weakly recommended them as second-line medications. We could not make a well-directed recommendation regarding premedication for preventing anaphylaxis since it is difficult to weigh the concerns and potential effects. Conclusion: For the emergency management of anaphylaxis we conclude that: • NIAID/FAAN diagnostic criteria and the four-tier grading system should be used for the diagnosis • Prompt and proper administration of epinephrine is critical.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,School of Pharmaceutical Science, Peking University, Beijing, China.,Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
| | - Qingbian Ma
- Emergency Department, Peking University Third Hospital, Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya'an Zheng
- Emergency Department, Peking University Third Hospital, Beijing, China
| | - Rongchang Chen
- State Key Laboratory for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Institute of Emergency and Critical Care Medicine of Shandong University, Ji'nan, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuqin Wang
- Pharmacy Department, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hongjun Zhang
- Departments of Nursing, Peking University Third Hospital, Beijing, China
| | - Yida Tang
- Department of Internal Medicine, Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaolong Chen
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qinglong Gu
- Department of Otolaryngology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Daihong Guo
- Pharmacy Department, Chinese PL A General Hospital, Beijing, China
| | - Xuehui Hu
- Department of Nursing, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lixin Xie
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Baohua Li
- Departments of Nursing, Peking University Third Hospital, Beijing, China
| | - Yuzhen Li
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Tongyu Lin
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lanting Lyu
- School of Public Administration and Policy, Renmin University of China, Beijing, China.,Health Technology Assessment and Health Policy Research Group at Renmin University of China, Beijing, China
| | - Quanxi Mei
- Department of Pharmacy, Shenzhen Bao'an Pure Chinese Medicine Treatment Hospital, Shenzhen, China
| | - Jie Shao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huawen Xin
- Department of Clinical Pharmacology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Fan Yang
- Institute of Antibiotics, Huashan Hospital Fudan University, Shanghai, China
| | - Hui Yang
- Departments of Nursing, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Yao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Guoqiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital Fudan University, Shanghai, China
| | - Zhu Zhu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Baoguo Zhou
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqing Gu
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mo Xian
- State Key Laboratory for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan Lyu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Institute of Emergency and Critical Care Medicine of Shandong University, Ji'nan, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Hangci Zheng
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,School of Pharmaceutical Science, Peking University, Beijing, China
| | - Chang Cui
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,School of Pharmaceutical Science, Peking University, Beijing, China
| | - Shuhua Deng
- Departments of Nursing, Peking University Third Hospital, Beijing, China
| | - Chao Huang
- National Center for Medical Service Administration, National Health Commission of the People's Republic of China, Beijing, China
| | - Lisha Li
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Liu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Peng Men
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,School of Pharmaceutical Science, Peking University, Beijing, China
| | - Chunli Shao
- Department of Internal Medicine, Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sai Wang
- Pharmacy Department, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiang Ma
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Department of Physiology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Qiang Wang
- National Center for Medical Service Administration, National Health Commission of the People's Republic of China, Beijing, China
| | - Suodi Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
| |
Collapse
|
3
|
Tan CH, Liew JL, Chong HP, Tan NH. Protein decomplexation and proteomics: A complementary assessment method of the physicochemical purity of antivenom. Biologicals 2021; 69:22-29. [PMID: 33431232 DOI: 10.1016/j.biologicals.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
The quality of antivenom is governed by its safety and efficacy profiles. These quality characteristics are much influenced by the purity of antivenom content. Rigorous assessment and meticulous monitoring of antivenom purity at the preclinical setting is hence crucial. This study aimed to explore an integrative proteomic method to assess the physicochemical purity of four commercially available antivenoms in the region. The antivenoms were subjected to Superdex 200 HR 10/30 size-exclusion fast-protein liquid chromatography (SE-FPLC). The proteins in each fraction were trypsin-digested and analyzed by nano-ESI-liquid chromatography-tandem mass spectrometry (LC-MS/MS). SE-FPLC resolved the antivenom proteins into three major protein components of very high (>200 kDa), high (100-120 kDa) and medium (<60 kDa) molecular weights. The major components (80-95% of total proteins) in the antivenoms were proteins of 100-120 kDa consisting of mainly the light and partially digested heavy immunoglobulin chains, consistent with F(ab')2 as the active principle of the antivenoms. However, LC-MS/MS also detected substantial quantity of large proteins (e.g. alpha-2-macroglobulins), immunoglobulin aggregates and impurities e.g. albumins in some products. The method is practical and able to unveil the quantitative and qualitative aspects of antivenom protein compositions. It is therefore a potentially useful preclinical assessment tool of antivenom purity.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jia Lee Liew
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ho Phin Chong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Experience of Snakebite Envenomation by a Desert Viper in Qatar. J Toxicol 2020; 2020:8810741. [PMID: 33101406 PMCID: PMC7576367 DOI: 10.1155/2020/8810741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Crotaline and elapid snakebites are reported all over the world as well as in the Middle East and other countries around this region. However, data regarding snakebites and their treatment in Qatar are limited. This review paper is going to investigate the presentation and treatment of snakebite in Qatar. A good assessment helps to decide on the management of the snakebites envenomation. Antivenom and conservative management are the mainstays of treatment for crotaline snakebite. Point-of-care ultrasound (POCUS) has been suggested to do early diagnosis and treatment of soft tissue problems, such as edema and compartment syndrome, after a snakebite. The supporting data are not sufficient regarding the efficiency of POCUS in diagnosing the extent and severity of tissue involvement and its ultimate effect on the outcome. Further research is suggested in this case. Systemic complications, such as bleeding diathesis, can be managed by administering clotting factors and platelets.
Collapse
|
5
|
Shim JS, Kang H, Cho Y, Shin H, Lee H. Adverse Reactions after Administration of Antivenom in Korea. Toxins (Basel) 2020; 12:E507. [PMID: 32781766 PMCID: PMC7472312 DOI: 10.3390/toxins12080507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
Kovax® antivenom is the main treatment for toxins produced by the Gloydius species. However, research on adverse reactions after Kovax® antivenom administration is scarce. We aimed to identify the incidence and characteristics of adverse reactions after Kovax® antivenom administration. We conducted a retrospective review of the medical records of snakebite patients in Korea between January 2008 and September 2019. We identified the frequency, characteristics, and treatments of adverse reactions to Kovax® antivenom. There were 150 patients with snakebites, of whom 121 (80.7%) patients received Kovax® antivenom. Adverse reactions occurred in five patients (4.1%). Acute adverse reactions within 24 h of antivenom administration occurred in two patients (1.7%). The symptoms of patients with acute adverse reactions were nausea, diaphoresis, dizziness, and hypotension. Delayed adverse reactions that occurred 24 h after antivenom administration were reported in three patients (2.5%). One patient had a skin rash after 10 days, and two patients had fever 37 and 48 h after antivenom use. In conclusion, most patients were managed safely after Kovax® antivenom, and the incidence of adverse reactions was low. Severe adverse reactions occurred in a small percentage of patients, and there were no deaths.
Collapse
Affiliation(s)
- Jin Seok Shim
- Department of Emergency Medicine, College of Medicine, Hanyang University Hospital, Hanyang University, 04763 Seoul, Korea; (J.S.S.); (H.L.)
| | - Hyunggoo Kang
- Department of Emergency Medicine, College of Medicine, Hanyang University Hospital, Hanyang University, 04763 Seoul, Korea; (J.S.S.); (H.L.)
| | - Yongil Cho
- Department of Emergency Medicine, College of Medicine, Hanyang University Hospital, Hanyang University, 04763 Seoul, Korea; (J.S.S.); (H.L.)
| | - Hyungoo Shin
- Department of Emergency Medicine, College of Medicine, Hanyang University Guri Hospital, Hanyang University, 11923 Guri, Korea;
| | - Heekyung Lee
- Department of Emergency Medicine, College of Medicine, Hanyang University Hospital, Hanyang University, 04763 Seoul, Korea; (J.S.S.); (H.L.)
| |
Collapse
|
6
|
Shaker MS, Wallace DV, Golden DBK, Oppenheimer J, Bernstein JA, Campbell RL, Dinakar C, Ellis A, Greenhawt M, Khan DA, Lang DM, Lang ES, Lieberman JA, Portnoy J, Rank MA, Stukus DR, Wang J, Riblet N, Bobrownicki AMP, Bontrager T, Dusin J, Foley J, Frederick B, Fregene E, Hellerstedt S, Hassan F, Hess K, Horner C, Huntington K, Kasireddy P, Keeler D, Kim B, Lieberman P, Lindhorst E, McEnany F, Milbank J, Murphy H, Pando O, Patel AK, Ratliff N, Rhodes R, Robertson K, Scott H, Snell A, Sullivan R, Trivedi V, Wickham A, Shaker MS, Wallace DV, Shaker MS, Wallace DV, Bernstein JA, Campbell RL, Dinakar C, Ellis A, Golden DBK, Greenhawt M, Lieberman JA, Rank MA, Stukus DR, Wang J, Shaker MS, Wallace DV, Golden DBK, Bernstein JA, Dinakar C, Ellis A, Greenhawt M, Horner C, Khan DA, Lieberman JA, Oppenheimer J, Rank MA, Shaker MS, Stukus DR, Wang J. Anaphylaxis-a 2020 practice parameter update, systematic review, and Grading of Recommendations, Assessment, Development and Evaluation (GRADE) analysis. J Allergy Clin Immunol 2020; 145:1082-1123. [PMID: 32001253 DOI: 10.1016/j.jaci.2020.01.017] [Citation(s) in RCA: 375] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Anaphylaxis is an acute, potential life-threatening systemic allergic reaction that may have a wide range of clinical manifestations. Severe anaphylaxis and/or the need for repeated doses of epinephrine to treat anaphylaxis are risk factors for biphasic anaphylaxis. Antihistamines and/or glucocorticoids are not reliable interventions to prevent biphasic anaphylaxis, although evidence supports a role for antihistamine and/or glucocorticoid premedication in specific chemotherapy protocols and rush aeroallergen immunotherapy. Evidence is lacking to support the role of antihistamines and/or glucocorticoid routine premedication in patients receiving low- or iso-osmolar contrast material to prevent recurrent radiocontrast media anaphylaxis. Epinephrine is the first-line pharmacotherapy for uniphasic and/or biphasic anaphylaxis. After diagnosis and treatment of anaphylaxis, all patients should be kept under observation until symptoms have fully resolved. All patients with anaphylaxis should receive education on anaphylaxis and risk of recurrence, trigger avoidance, self-injectable epinephrine education, referral to an allergist, and be educated about thresholds for further care.
Collapse
Affiliation(s)
- Marcus S Shaker
- Section of Allergy and Clinical Immunology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH.
| | - Dana V Wallace
- Nova Southeastern Allopathic Medical School, Fort Lauderdale, Fla
| | - David B K Golden
- Division of Allergy-Clinical Immunology, Johns Hopkins University, Baltimore, Md
| | - John Oppenheimer
- Department of Internal Medicine, Pulmonary and Allergy, University of Medicine and Dentistry of New Jersey-Rutgers New Jersey Medical School and Pulmonary and Allergy Associates, Morristown, NJ
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Immunology, Allergy Section, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Chitra Dinakar
- Allergy, Asthma, and Immunodeficiency, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Anne Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Matthew Greenhawt
- Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Denver, Colo
| | - David A Khan
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - David M Lang
- Department of Allergy and Clinical Immunology, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Eddy S Lang
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jay A Lieberman
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tenn
| | - Jay Portnoy
- Pediatric Allergy and Immunology, Children's Mercy Hospital, Kansas City School of Medicine, Kansas City, Mo
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Arizona, Scottsdale, Ariz
| | - David R Stukus
- Division of Allergy and Immunology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Julie Wang
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Natalie Riblet
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | | | - Teresa Bontrager
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Jarrod Dusin
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Jennifer Foley
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Becky Frederick
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Eyitemi Fregene
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | - Sage Hellerstedt
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | - Ferdaus Hassan
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Kori Hess
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Caroline Horner
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St. Louis, Mo
| | - Kelly Huntington
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Poojita Kasireddy
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | - David Keeler
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Bertha Kim
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | - Phil Lieberman
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tenn
| | - Erin Lindhorst
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Fiona McEnany
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | - Jennifer Milbank
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | - Helen Murphy
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Oriana Pando
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | - Ami K Patel
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | - Nicole Ratliff
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Robert Rhodes
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Kim Robertson
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Hope Scott
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Audrey Snell
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Rhonda Sullivan
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | - Varahi Trivedi
- The Dartmouth Institute for Health Policy and Clinical Practice, Hanover, NH
| | - Azadeh Wickham
- Office of Evidence-Based Practice, Children's Mercy Hospital, Kansas City, Mo
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jorge RJB, Martins RD, Araújo RM, da Silva MA, Monteiro HSA, Ximenes RM. Plants and Phytocompounds Active Against Bothrops Venoms. Curr Top Med Chem 2019; 19:2003-2031. [DOI: 10.2174/1568026619666190723153925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
:
Snakebite envenomation is an important health problem in tropical countries, with severe
human and social consequences. In Latin America, the Bothrops species constitute the main threat to
humans, and the envenomation caused by these species quickly develops into severe local tissue damage,
including swelling, hemorrhaging, myonecrosis, skin ulceration, and pain. The systemic effects of
envenomation are usually neutralized by antivenom serum therapy, despite its intrinsic risks. However,
neutralization of local tissue damage remains a challenge. To improve actual therapy, two major alternatives
are proposed: the rational design of new specific antibodies for most of the tissue damaging/
poor immunogenic toxins, or the search for new synthetic or natural compounds which are able to
inhibit these toxins and complement the serum therapy. Natural compounds isolated from plants,
mainly from those used in folk medicine to treat snakebite, are a good choice for finding new lead
compounds to improve snakebite treatment and minimize its consequences for the victims. In this article,
we reviewed the most promising plants and phytocompounds active against bothropic venoms.
Collapse
Affiliation(s)
- Roberta Jeane Bezerra Jorge
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - René Duarte Martins
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | | | | | - Helena Serra Azul Monteiro
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rafael Matos Ximenes
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
8
|
Wilkins D, Burns DS, Wilson D, Warrell DA, Lamb LEM. Snakebites in Africa and Europe: a military perspective and update for contemporary operations. J ROY ARMY MED CORPS 2018; 164:370-379. [PMID: 29626137 DOI: 10.1136/jramc-2017-000883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/04/2022]
Abstract
Snakebite envenoming is rare among military patients, with few cases reported in recent years. Increasingly, however, military operations are taking place in remote parts of Africa, which are inhabited by numerous species of venomous snake, and in Europe, where dangerous species exist but are less common. Bites from a venomous snake may prove fatal, and therefore military medics must be adequately prepared to manage them. This paper reviews the most medically significant species of venomous snake present in Africa and Europe, before suggesting an evidence-based approach to snakebite prevention and management, including possible changes to the UK's Clinical Guidelines for Operations.
Collapse
Affiliation(s)
- Daniel Wilkins
- Royal Army Medical Corps, 3 Medical Regiment, Preston, UK
| | - D S Burns
- Department of Infection and Tropical Medicine, Heartlands Hospital, Birmingham, UK.,Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK
| | - D Wilson
- Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK.,Respiratory Medicine, University Hospital Birmingham, Birmingham, UK
| | - D A Warrell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L E M Lamb
- Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK.,Department of Infectious Diseases, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Morais V. Antivenom therapy: efficacy of premedication for the prevention of adverse reactions. J Venom Anim Toxins Incl Trop Dis 2018; 24:7. [PMID: 29507580 PMCID: PMC5831611 DOI: 10.1186/s40409-018-0144-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/07/2018] [Indexed: 11/29/2022] Open
Abstract
Antivenoms or antitoxins have been effectively used for more than a century. During this time, these products have always proven to be highly effective in the treatment of infections and envenomations. However, antivenoms did not exhibit good safety results in their initial applications. After many improvements, antivenoms have substantially better safety profiles but still have some side effects. Due to the occurrence of adverse reactions, the practice of using premedication with the intent to decrease side effects has become accepted or mandatory in many countries. The drugs used for premedication belong to the histamine H1 antagonist, glucocorticoid and catecholamine groups. Currently, this practice is being questioned due to low or controversial efficacies in clinical assays. In this article, we discuss the causes of adverse reactions, the mechanisms of drugs that block the undesired effects and the results obtained in clinical trials. Although these three families of drugs could have positive effects on reducing adverse reactions, only adrenaline has demonstrated positive results in clinical assays.
Collapse
Affiliation(s)
- Victor Morais
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Uruguay, Av. Alfredo Navarro, 3051 Montevideo, Uruguay
| |
Collapse
|
10
|
Mong R, Ng VCH, Tse ML. Safety profile of snake antivenom (use) in Hong Kong - a review of 191 cases from 2008 to 2015. Clin Toxicol (Phila) 2017; 55:1066-1071. [PMID: 28657429 DOI: 10.1080/15563650.2017.1334916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The mainstay of treatment for significant envenoming from snakebites is antivenom. However, there is insufficient data regarding the safety of antivenom used in Hong Kong. We describe the incidence of hypersensitivity reactions from antivenom use and review the frequency and reasons for intensive care unit (ICU) admission. METHODS The Hong Kong Poisons Information Centre database was reviewed. All patients given snake antivenom between 2008 and 2015 were included. Patient demographics, species of snake involved, details of antivenom used, treatment location, use of pre-treatment, reasons for ICU admission (where applicable) and details of early and late antivenom reactions were extracted. RESULTS There were 191 patients who received snake antivenom. Most (93%) were treated with either the green pit viper antivenom from Thailand or the Agkistrodon halys antivenom from China. The incidences of early hypersensitivity reactions to green pit viper antivenom and Agkistrodon Halys antivenom were 4.7% and 1.4%, respectively. Most patients (69%) were managed in the ED observation ward or general ward. There were 59 patients managed in ICU, most (90%) of whom were admitted for close monitoring during antivenom administration. There were no cases of significant morbidity from antivenom administration. Eight patients (5.6%) had features suggestive of mild serum sickness. CONCLUSIONS The incidence of immediate hypersensitivity reaction to antivenom commonly used in Hong Kong is low. Majority of patients were managed safely in the emergency department observation ward or general ward. Serum sickness appears to be uncommon and possible cases presented with mild features.
Collapse
Affiliation(s)
- Rupeng Mong
- a Hong Kong Poison Information Centre , United Christian Hospital , Kwun Tong, Kowloon , Hong Kong
| | - Vember C H Ng
- a Hong Kong Poison Information Centre , United Christian Hospital , Kwun Tong, Kowloon , Hong Kong
| | - Man Li Tse
- a Hong Kong Poison Information Centre , United Christian Hospital , Kwun Tong, Kowloon , Hong Kong
| |
Collapse
|
11
|
Abstract
Snakebites by exotic venomous snakes can cause serious or even life-threatening envenoming. In Europe and North America most victims are breeders, with a few snakebites from wild native American rattlesnakes. The envenomed victims may present in organ and/or system failure with muscle paralysis, respiratory failure, circulatory instability, acute kidney injury, severe coagulation disorder, and local disability - compartment syndrome and necrosis. Best managed by close collaboration between clinical toxicology and intensive care, most severe envenomings are managed primarily by intensive care physicians. Due to the low incidence of severe envenoming, the clinical course and correct management of these cases are not intrinsically familiar to most physicians. This review article summarizes the clinical syndromes caused by severe envenoming and the therapeutic options available in the intensive care setting.
Collapse
Affiliation(s)
- Jiří Valenta
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Zdeněk Stach
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Michálek
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Efficacy of intravenous hydrocortisone administered 2–4 h prior to antivenom as prophylaxis against adverse drug reactions to snake antivenom in Sri Lanka: An open labelled randomized controlled trial. Toxicon 2016; 120:159-65. [DOI: 10.1016/j.toxicon.2016.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022]
|
13
|
Valenta J, Stach Z, Michalek P. Exotic snake bites in the Czech Republic--Epidemiological and clinical aspects during 15-year period (1999-2013). Clin Toxicol (Phila) 2014; 52:258-64. [PMID: 24666339 DOI: 10.3109/15563650.2014.902066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Only one natural venomous snake-the adder viper-lives in the central European region and its bite is usually associated only with mild course of envenoming. Cases of envenoming caused by exotic snakes among their breeders are clinically more important. OBJECTIVE The aim of this study was to analyze the epidemiological and clinical aspects of registered venomous bites caused by exotic snakes in the Czech Republic over a period of 15 years (1999-2013). MATERIALS AND METHODS This is an observational case series. Data have been collected retrospectively from a database and medical charts of the Toxinology Center belonging to the General University Hospital in Prague. RESULTS In total, 87 cases of exotic snakebites caused by 34 venomous snake species were registered during the study period, coming from 18 genera of Elapinae, Viperinae, and Crotalinae subfamilies. In the cohort, 29 patients (33.3%) developed systemic envenoming and 17 (19.5%) were treated with antivenom. Ten cases of envenoming (11.5%) were considered as potentially life threatening. No patient died due to envenoming caused by exotic snake bites during the study period. Four illustrative cases of envenoming (Echis pyramidum, Dendroaspis polylepis, Protobothrops mangshanensis, and Proatheris superciliaris) are described in detail. CONCLUSION Bites caused by exotic snakes resulted in serious and life-threatening envenomings in some patients. Early transfer to the Center, antivenom administration, and support of failing organ functions contributed to favorable outcome of victims.
Collapse
Affiliation(s)
- Jiri Valenta
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and General University Hospital , Prague , Czech Republic
| | | | | |
Collapse
|
14
|
Effectiveness of Centruroides scorpion antivenom compared to historical controls. Toxicon 2013; 76:377-85. [DOI: 10.1016/j.toxicon.2013.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
|
15
|
Sharma M, Gogoi N, Dhananjaya BL, Menon JC, Doley R. Geographical variation of Indian Russell’s viper venom and neutralization of its coagulopathy by polyvalent antivenom. TOXIN REV 2013. [DOI: 10.3109/15569543.2013.855789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
León G, Herrera M, Segura Á, Villalta M, Vargas M, Gutiérrez JM. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon 2013; 76:63-76. [PMID: 24055551 DOI: 10.1016/j.toxicon.2013.09.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/01/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
Abstract
Snake antivenoms are formulations of immunoglobulins, or immunoglobulin fragments, purified from the plasma of animals immunized with snake venoms. Their therapeutic success lies in their ability to mitigate the progress of toxic effects induced by snake venom components, when administered intravenously. However, due to diverse factors, such as deficient manufacturing practices, physicochemical characteristics of formulations, or inherent properties of heterologous immunoglobulins, antivenoms can induce undesirable adverse reactions. Based on the time lapse between antivenom administration and the onset of clinical manifestations, the World Health Organization has classified these adverse reactions as: 1 - Early reactions, if they occur within the first hours after antivenom infusion, or 2 - late reactions, when occurring between 5 and 20 days after treatment. While all late reactions are mediated by IgM or IgG antibodies raised in the patient against antivenom proteins, and the consequent formation of immune complexes, several mechanisms may be responsible for the early reactions, such as pyrogenic reactions, IgE-mediated reactions, or non IgE-mediated reactions. This work reviews the hypotheses that have been proposed to explain the mechanisms involved in these adverse reactions to antivenoms. The understanding of these pathogenic mechanisms is necessary for the development of safer products and for the improvement of snakebite envenomation treatment.
Collapse
Affiliation(s)
- Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | | | | | |
Collapse
|
17
|
Deshpande RP, Motghare VM, Padwal SL, Pore RR, Bhamare CG, Deshmukh VS, Pise HN. Adverse drug reaction profile of anti-snake venom in a rural tertiary care teaching hospital. J Young Pharm 2013; 5:41-5. [PMID: 24396245 PMCID: PMC3828666 DOI: 10.1016/j.jyp.2013.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/19/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES The study was carried out with the aim of evaluation of the adverse drug reaction profile of anti-snake venom serum (ASV) in a rural tertiary care hospital. METHODS An observational study was conducted in SRTR Medical College, Ambajogai, Maharashtra, India. A total number of 296 indoor case papers of snake bite from February to September 2011 and June to August 2012 were retrieved from the record section and the antivenom reactions were assessed. In addition, basic epidemiological data and prescribing practices of ASV were also analyzed. RESULTS Vasculotoxic snake bites were more common (50.61%) than neuroparalytic ones (22.56%). Mild envenomation was the commonest presentation. A total of 92 (56.10%) patients who received ASV suffered from antivenom reactions. The most common nature of reaction was chills, rigors (69.56%) followed by nausea and vomiting (34.8%). 10-15% patients suffered from moderate to severe reactions like hypotension and sudden respiratory arrest. We did not find any dose response relationship of ASV to risk of reactions (odds ratio 0.37). Intradermal sensitivity test was performed in about 72% cases. CONCLUSION Our study showed a higher incidence of reactions to ASV at our institute.
Collapse
Affiliation(s)
- Rushikesh Prabhakar Deshpande
- Department of Pharmacology, Swami Ramanand Teerth Rural Government Medical College, Ambajogai, Beed, Maharashtra 431517, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Morais V, Berasain P, Ifrán S, Carreira S, Tortorella MN, Negrín A, Massaldi H. Humoral immune responses to venom and antivenom of patients bitten by Bothrops snakes. Toxicon 2012; 59:315-9. [DOI: 10.1016/j.toxicon.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/24/2011] [Accepted: 12/08/2011] [Indexed: 11/24/2022]
|
19
|
Torres MCM, das Chagas L Pinto F, Braz-Filho R, Silveira ER, Pessoa ODL, Jorge RJB, Ximenes RM, Monteiro HSA, Monteiro Evangelista JSA, Diz-Filho EBS, Toyama MH. Antiophidic solanidane steroidal alkaloids from Solanum campaniforme. JOURNAL OF NATURAL PRODUCTS 2011; 74:2168-2173. [PMID: 21962208 DOI: 10.1021/np200479a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three new solanidane alkaloids bearing a 22,23-epoxy ring (1-3) and four known compounds were isolated from leaves of Solanum campaniforme. The structures were determined using spectroscopic techniques, including 1D and 2D NMR, and HRESIMS experiments. The antiophidic activity of the alkaloids was tested against Bothrops pauloensis venom. Compounds 1-3 completely inhibited myotoxicity without inhibiting phospholipase A2 activity of the venom, while hemorrhage and skin necrosis were significantly reduced in the presence of alkaloids 1 and 2.
Collapse
Affiliation(s)
- Maria Conceição M Torres
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 12.200, Fortaleza-CE, 60.021-970, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Habib AG. Effect of Pre-Medication on Early Adverse Reactions Following Antivenom Use in Snakebite. Drug Saf 2011; 34:869-80. [DOI: 10.2165/11592050-000000000-00000] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Abstract
Snake bite is a common and frequently devastating environmental and occupational disease, especially in rural areas of tropical developing countries. Its public health importance has been largely ignored by medical science. Snake venoms are rich in protein and peptide toxins that have specificity for a wide range of tissue receptors, making them clinically challenging and scientifically fascinating, especially for drug design. Although the full burden of human suffering attributable to snake bite remains obscure, hundreds of thousands of people are known to be envenomed and tens of thousands are killed or maimed by snakes every year. Preventive efforts should be aimed towards education of affected communities to use proper footwear and to reduce the risk of contact with snakes to a minimum through understanding of snakes' behaviour. To treat envenoming, the production and clinical use of antivenom must be improved. Increased collaboration between clinicians, epidemiologists, and laboratory toxinologists should enhance the understanding and treatment of envenoming.
Collapse
Affiliation(s)
- David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|