1
|
Ligina V, Martin R, Aiswarya MV, Mashirin KR, Chitra KC. Acute and sublethal effects of acrylamide on the freshwater fish Anabas testudineus (Bloch, 1792). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90835-90851. [PMID: 35879632 DOI: 10.1007/s11356-022-22155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Acrylamide, a synthetic compound, has a wide range of industrial applications that find multiple ways to reach aquatic ecosystem. The median lethal concentration of acrylamide determined using probit analysis in the fish Anabas testudineus was 132 µg L-1 concentration together with altered behavioral patterns. Hematological and antioxidant status was evaluated at a sublethal concentration (one-tenth of LC50-96 h), i.e., 13.2 µg L-1 concentration for 24, 48, 72, and 96 h. A reduction in erythrocytes count, hemoglobin content, and packed cell volume with a significant (P < 0.05) increase in leukocyte counts and differential counts were observed. Erythrocyte indices like mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) increased, whereas the mean corpuscular hemoglobin concentration (MCHC) showed a significant (P < 0.05) decrease when compared with control groups. The activities of superoxide dismutase, catalase, and glutathione reductase in gill tissues showed significant (P < 0.05) reduction, whereas the levels of hydrogen peroxide and lipid peroxidation increased significantly (P < 0.05) indicating oxidative stress. The findings suggest that acrylamide at sublethal concentration caused alteration in hematological parameters and induced oxidative stress in gill tissue of the fish A. testudineus. Hence, restrictions on the use of acrylamide in food and industrial products are recommended since humans are the direct consumer of fish products.
Collapse
Affiliation(s)
- Velliyath Ligina
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - Ranjana Martin
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | | | - Kajahussain Reeha Mashirin
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - Kumari Chidambaran Chitra
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India.
| |
Collapse
|
2
|
Effect of Chronic Exposure to Pesticide Methomyl on Antioxidant Defense System in Testis of Tilapia (Oreochromis niloticus) and Its Recovery Pattern. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chronic effect of environmental methomyl on the antioxidant system in testis of Nile tilapia (Oreochromis niloticus) and its recovery pattern was investigated. Tilapia were exposed to sublethal concentrations of 0.2, 2, 20 and 200 μgL−1 methomyl for 30 days and thereafter moved to methomyl-free water for 18 days. Antioxidant levels in testis, including glutathione peroxidase, catalase, glutathione-S-transferase, glutathione reductase, superoxide dismutase, reduced glutathione, oxidized glutathione were measured every 6 days during the period of exposure, and at 18 days after being transferred to methomyl-free water. The results showed that lower methomyl concentration (0.2 μgL−1) had no effect on the above antioxidants, thus 0.2 μgL−1 could be seen as NOAEL for methomyl to tilapia. However, higher methomyl concentration of 2, 20 and 200 μgL−1 could significantly influence the above antioxidants. Glutathione peroxidase and oxidized glutathione increased significantly. On the contrary, reduced glutathione decreased significantly. Catalase, superoxide dismutase, glutathione reductase, glutathione-S-transferase increased at lower methomyl (2 and 20 μgL−1), but decreased at higher methomyl (200 μgL−1). The recovery test showed that oxidative damage caused by lower methomyl of 2 and 20 μgL−1 was reversible, and oxidative damage caused by higher methomyl of 200 μgL−1 was irreversible within 18 days of recovery period.
Collapse
|
3
|
Nong QY, Liu YA, Qin LT, Liu M, Mo LY, Liang YP, Zeng HH. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. CHEMOSPHERE 2021; 262:127793. [PMID: 32799142 DOI: 10.1016/j.chemosphere.2020.127793] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Currently, few studies have investigated the joint toxicity mechanism of azole fungicides at different exposure times and mixed at the relevant environmental concentrations. In this study, three common azole fungicides, namely, myclobutanil (MYC), propiconazole (PRO), and tebuconazole (TCZ), were used in studying the toxic mechanisms of a single substance and its ternary mixture exposed to ambient concentrations of Chlorella pyrenoidosa. Superoxide dismutase (SOD), catalase (CAT), chlorophyll a (Chla), and total protein (TP), were used as physiological indexes. Results showed that three azole fungicides and ternary mixture presented obvious time-dependent toxicities at high concentrations. MYC induced a hormetic effect on algal growth, whereas PRO and TCZ inhibit algal growth in the entire range of the tested concentrations. The toxicities of the three azole fungicides at 7 days followed the order PRO > TCZ > MYC. Three azole fungicides and their ternary mixture induced different levels of SOD and CAT activities in algae at high concentrations. The ternary mixture showed additive effects after 4 and 7 days exposure, but no effect was observed at actual environmental concentrations. The toxic mechanisms may be related to the continuous accumulation of reactive oxygen species, which not only affected protein structures and compositions but also damaged thylakoid membranes, hindered the synthesis of proteins and chlorophyll a, and eventually inhibited algal growth. These findings increase the understanding of the ecotoxicity of azole fungicides and use of azole fungicides in agricultural production.
Collapse
Affiliation(s)
- Qiong-Yuan Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yong-An Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Min Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ling-Yun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yan-Peng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hong-Hu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
4
|
Gajski G, Gerić M, Domijan AM, Golubović I, Žegura B. Marine toxin domoic acid induces in vitro genomic alterations in human peripheral blood cells. Toxicon 2020; 187:93-100. [PMID: 32891664 DOI: 10.1016/j.toxicon.2020.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/01/2022]
Abstract
Domoic acid (DA) is an excitatory marine neurotoxin produced by diatoms Pseudo-nitzschia spp. as a defence compound that accumulates in the food web and is associated with amnesic shellfish poisoning in humans. Although its toxicity has been well established in marine species, there is limited data on DA cytogenotoxicity in human non-target cells. Therefore, we aimed to investigate the cytogenotoxic potential of DA (0.01-10 μg/mL) in human peripheral blood cells (HPBCs) using a battery of bioassays in vitro. In addition, the influence of DA on oxidative stress parameters as a possible mechanism of action was assessed. Results revealed that DA induced dose- and time-dependent cytotoxic effects. DA significantly affected genomic instability by increasing the frequency of micronuclei and nuclear buds. Furthermore, a slight induction of primary DNA strand breaks was detected after 24 h of exposure accompanied by a significant increase in the number of abnormal size tailed nuclei. No induction of hOGG1 (human 8-oxoguanine DNA glycosylase) sensitive sites was determined upon exposure to DA. Additionally, DA induced oxidative stress by increased production of reactive oxygen species accompanied by changes in glutathione, superoxide dismutase, malondialdehyde and protein carbonyl levels. Overall, the obtained results showed adverse genotoxic effects of DA in non-target HPBCs.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia.
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia.
| | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, 10000, Zagreb, Croatia.
| | - Ivana Golubović
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, 10000, Zagreb, Croatia
| | - Bojana Žegura
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, 1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Effects of Marine Toxin Domoic Acid on Innate Immune Responses in Bay Scallop Argopecten irradians. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7110407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Domoic acid (DA) is an amnesic shellfish poisoning toxin produced by some species of the genera Pseudo-nitzschia and Nitzschia. This toxin has harmful effects on various species, especially scallops. This study aimed to investigate the effects of DA exposure on the immune and physical responses of bay scallop, Argopecten irradians. Various immunological and physical parameters were assessed (acid phosphatase (ACP), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), lipid peroxide (LPO), nitric oxide (NO), and the total protein content) in the haemolymph of scallops at 3, 6, 12, 24, and 48 h post-exposure to DA at different concentrations (10, 50, and 100 ng/mL). Moreover, the expression of immune-related genes (CLT-6, FREP, HSP90, MT, PGRP, and PrxV) was assessed. The activities of ACP, ALP, and LDH and the total protein content and LPO increased upon exposure to DA at different concentrations, while NO levels were decreased. Furthermore, immune-related genes were assessed upon DA exposure. Our results showed that exposure to DA negatively impacts immune function and disrupts physiological activities in bay scallops.
Collapse
|
6
|
Souid G, Souayed N, Haouas Z, Maaroufi K. Does the phycotoxin Okadaic acid cause oxidative stress damages and histological alterations to seabream (Sparus aurata)? Toxicon 2018; 144:55-60. [DOI: 10.1016/j.toxicon.2018.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022]
|
7
|
Thamke VR, Kodam KM. Toxicity study of ionic liquid, 1-butyl-3-methylimidazolium bromide on guppy fish, Poecilia reticulata and its biodegradation by soil bacterium Rhodococcus hoagii VRT1. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:408-416. [PMID: 27585273 DOI: 10.1016/j.jhazmat.2016.08.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
This study deals with the toxic effect of ionic liquid, 1-butyl-3-methylimidazolium bromide (BMImBr) on guppy fish, Poecilia reticulata. The fishes were exposed to various concentrations of ionic liquid for 96h. The activity of antioxidant enzymes viz. catalase, glutathione S-transferase and superoxide dismutase were found to be increased with increase in concentration. The BMImBr resistant bacterium were isolated from garden soil by enrichment method and identified as Rhodococcus hoagii VRT1 by 16S rDNA sequencing. An isolated bacterium was effective in biodegradation of compound in 8 days which was analyzed by changes in BOD and COD and later on confirmed by HRMS analysis. Higher concentrations of compound induced DNA damage in liver cells while degraded product did not show adverse impact on the DNA integrity.
Collapse
Affiliation(s)
- Viresh R Thamke
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Kisan M Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
8
|
González PM, Puntarulo S. Seasonality and toxins effects on oxidative/nitrosative metabolism in digestive glands of the bivalve Mytilus edulis platensis. Comp Biochem Physiol A Mol Integr Physiol 2016; 200:79-86. [DOI: 10.1016/j.cbpa.2016.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 04/09/2016] [Indexed: 01/17/2023]
|
9
|
Wang D, Zhao J, Li S, Shen G, Hu S. Quercetin attenuates domoic acid-induced cognitive deficits in mice. Nutr Neurosci 2016; 21:123-131. [PMID: 28277184 DOI: 10.1080/1028415x.2016.1231438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Domoic acid (DA) is one of the best known marine toxins, causative of important neurotoxic alterations. DA effects are documented both in wildlife and experimental assays, showing that this toxin causes severe injuries principally in the hippocampal area. Accumulating evidence indicates that mitochondrial dysfunction and oxidative stress are involved in DA-induced cognitive functional impairment. Therefore, therapeutics targeted to improve mitochondrial function and increase oxidative stress defence could be beneficial. Quercetin, a bioflavanoid, has been reported to have potent neuroprotective effects and anti-oxidative ability, but its preventive effects on DA-induced mitochondrial dysfunction and cognitive impairment have not been well characterised. In this study, we evaluated the effects of quercetin on DA-induced cognitive deficits in mice and explored its potential mechanism. Our results showed that the oral administration of quercetin to DA-treated mice significantly improved their behavioural performance in a novel objective recognition task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of PPARγ coactivator 1α-mediated mitochondrial biogenesis signalling and an amelioration of mitochondrial dysfunction. Moreover, quercetin activated nuclear factorerythroid-2-related factor-2 (Nrf2)-mediated phase II enzymes and decreased reactive oxygen species and protein carbonylation. Furthermore, the AMP-activated protein kinase (AMPK) activity significantly increased in the quercetin-treated group. Taken together, these findings suggest that a reduction in mitochondrial dysfunction through the increase of AMPK activity, coupled with an increase in Nrf2 pathway mediated oxidative defence, may be one of the mechanisms by which quercetin improves cognitive impairment induced by DA in mice.
Collapse
Affiliation(s)
- Dongmei Wang
- a Department of Pathogen Biology, Medical College , Henan University of Science and Technology , Luoyang , China
| | - Jianlong Zhao
- b Department of Pathology, Medical College , Henan University of Science and Technology , Luoyang , China
| | - Sanqiang Li
- c Department of Biochemistry and Molecular Biology, Medical College , Henan University of Science and Technology , Luoyang , China
| | - Guomin Shen
- c Department of Biochemistry and Molecular Biology, Medical College , Henan University of Science and Technology , Luoyang , China
| | - Shu Hu
- c Department of Biochemistry and Molecular Biology, Medical College , Henan University of Science and Technology , Luoyang , China
| |
Collapse
|
10
|
Feng M, Qu R, Li Y, Wei Z, Wang Z. Biochemical biomarkers in liver and gill tissues of freshwater fish Carassius auratus following in vivo exposure to hexabromobenzene. ENVIRONMENTAL TOXICOLOGY 2014; 29:1460-1470. [PMID: 23804377 DOI: 10.1002/tox.21876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 05/04/2013] [Accepted: 05/12/2013] [Indexed: 06/02/2023]
Abstract
Hexabromobenzene (HBB) is a novel brominated flame retardant (BFR) with ample evidence of its ubiquitous existence in the aquatic ecosystems. However, to date, the toxicological effects of this BFR on fish have been inadequately researched. The present study was conducted, based on an in vivo model, to investigate HBB-induced biochemical changes in liver and gill tissues of Carassius auratus after medium-term exposure to different concentrations (10, 150, and 300 mg/kg) for 7, 14, and 25 days. Oxidative stress was evoked evidently for the prolonged exposure, demonstrated by significant inhibition in antioxidant enzymes activities including superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione S-transferase, and a decrease in reduced glutathione level, as well as simultaneous elevation in malondialdehyde content. Moreover, Na(+) , K(+) -ATPase activity, and protein level were remarkably reduced in fish tissues. Based on the integrated biomarker response, the toxic potency in each treatment was distinguished, and the more severe stress was mainly noted with the increasing concentrations and the extending durations. It was also observed that liver exhibited more pronounced alterations in biochemical parameters than gill, probably indicating the vulnerability of liver to HBB-triggered oxidative stress. Taken together, the results of this study clearly showed that HBB was capable of inducing oxidative stress and inhibiting Na(+) , K(+) -ATPase activity in different tissues of C. auratus after medium-term exposure.
Collapse
Affiliation(s)
- Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210046, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Effects of dietary tert-butylhydroquinone on domoic acid metabolism and transcription of detoxification-related liver genes in red sea bream Pagrus major. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, Li MQ. Troxerutin Counteracts Domoic Acid–Induced Memory Deficits in Mice by Inhibiting CCAAT/Enhancer Binding Protein β–Mediated Inflammatory Response and Oxidative Stress. THE JOURNAL OF IMMUNOLOGY 2013; 190:3466-79. [DOI: 10.4049/jimmunol.1202862] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice. Free Radic Biol Med 2012; 52:646-659. [PMID: 22178976 DOI: 10.1016/j.freeradbiomed.2011.11.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 11/28/2022]
Abstract
Recent findings suggest that endoplasmic reticulum stress may be involved in the pathogenesis of domoic acid-induced neurodegeneration. Purple sweet potato color, a class of naturally occurring anthocyanins, has beneficial health and biological effects. Recent studies have also shown that anthocyanins have estrogenic activity and can enhance estrogen receptor-α expression. In this study, we evaluated the effect of purple sweet potato color on cognitive deficits induced by hippocampal mitochondrial dysfunction in domoic acid-treated mice and explored the potential mechanisms underlying this effect. Our results showed that the oral administration of purple sweet potato color to domoic acid-treated mice significantly improved their behavioral performance in a step-through passive avoidance task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of estrogen receptor-α-mediated mitochondrial biogenesis signaling and by decreases in the expression of p47phox and gp91phox. Decreases in reactive oxygen species and protein carbonylation were also observed, along with a blockade of the endoplasmic reticulum stress pathway. Furthermore, purple sweet potato color significantly suppressed endoplasmic reticulum stress-induced apoptosis, which prevented neuron loss and restored the expression of memory-related proteins. However, knockdown of estrogen receptor-α using short hairpin RNA only partially blocked the neuroprotective effects of purple sweet potato color in the hippocampus of mice cotreated with purple sweet potato color and domoic acid, indicating that purple sweet potato color acts through multiple pathways. These results suggest that purple sweet potato color could be a possible candidate for the prevention and treatment of cognitive deficits in excitotoxic and other brain disorders.
Collapse
Affiliation(s)
- Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province, People's Republic of China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China.
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Wei Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province, People's Republic of China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| |
Collapse
|