1
|
Kini RM. Toxinology provides multidirectional and multidimensional opportunities: A personal perspective. Toxicon X 2020; 6:100039. [PMID: 32550594 PMCID: PMC7285919 DOI: 10.1016/j.toxcx.2020.100039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023] Open
Abstract
In nature, toxins have evolved as weapons to capture and subdue the prey or to counter predators or competitors. When they are inadvertently injected into humans, they cause symptoms ranging from mild discomfort to debilitation and death. Toxinology is the science of studying venoms and toxins that are produced by a wide variety of organisms. In the past, the structure, function and mechanisms of most abundant and/or most toxic components were characterized to understand and to develop strategies to neutralize their toxicity. With recent technical advances, we are able to evaluate and determine the toxin profiles using transcriptomes of venom glands and proteomes of tiny amounts of venom. Enormous amounts of data from these studies have opened tremendous opportunities in many directions of basic and applied research. The lower costs for profiling venoms will further fuel the expansion of toxin database, which in turn will provide greater exciting and bright opportunities in toxin research.
Collapse
Affiliation(s)
- R. Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Modahl CM, Brahma RK, Koh CY, Shioi N, Kini RM. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents. Annu Rev Anim Biosci 2019; 8:91-116. [PMID: 31702940 DOI: 10.1146/annurev-animal-021419-083626] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Snake venoms are primarily composed of proteins and peptides, and these toxins have developed high selectivity to their biological targets. This makes venoms interesting for exploration into protein evolution and structure-function relationships. A single venom protein superfamily can exhibit a variety of pharmacological effects; these variations in activity originate from differences in functional sites, domains, posttranslational modifications, and the formations of toxin complexes. In this review, we discuss examples of how the major venom protein superfamilies have diversified, as well as how newer technologies in the omics fields, such as genomics, transcriptomics, and proteomics, can be used to characterize both known and unknown toxins.Because toxins are bioactive molecules with a rich diversity of activities, they can be useful as therapeutic and diagnostic agents, and successful examples of toxin applications in these areas are also reviewed. With the current rapid pace of technology, snake venom research and its applications will only continue to expand.
Collapse
Affiliation(s)
- Cassandra M Modahl
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Rajeev Kungur Brahma
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077;
| | - Narumi Shioi
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , , .,Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan;
| | - R Manjunatha Kini
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| |
Collapse
|
3
|
Aird SD, Arora J, Barua A, Qiu L, Terada K, Mikheyev AS. Population Genomic Analysis of a Pitviper Reveals Microevolutionary Forces Underlying Venom Chemistry. Genome Biol Evol 2018; 9:2640-2649. [PMID: 29048530 PMCID: PMC5737360 DOI: 10.1093/gbe/evx199] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/24/2022] Open
Abstract
Venoms are among the most biologically active secretions known, and are commonly believed to evolve under extreme positive selection. Many venom gene families, however, have undergone duplication, and are often deployed in doses vastly exceeding the LD50 for most prey species, which should reduce the strength of positive selection. Here, we contrast these selective regimes using snake venoms, which consist of rapidly evolving protein formulations. Though decades of extensive studies have found that snake venom proteins are subject to strong positive selection, the greater action of drift has been hypothesized, but never tested. Using a combination of de novo genome sequencing, population genomics, transcriptomics, and proteomics, we compare the two modes of evolution in the pitviper, Protobothrops mucrosquamatus. By partitioning selective constraints and adaptive evolution in a McDonald–Kreitman-type framework, we find support for both hypotheses: venom proteins indeed experience both stronger positive selection, and lower selective constraint than other genes in the genome. Furthermore, the strength of selection may be modulated by expression level, with more abundant proteins experiencing weaker selective constraint, leading to the accumulation of more deleterious mutations. These findings show that snake venoms evolve by a combination of adaptive and neutral mechanisms, both of which explain their extraordinarily high rates of molecular evolution. In addition to positive selection, which optimizes efficacy of the venom in the short term, relaxed selective constraints for deleterious mutations can lead to more rapid turnover of individual proteins, and potentially to exploration of a larger venom phenotypic space.
Collapse
Affiliation(s)
- Steven D Aird
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| | - Jigyasa Arora
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| | - Agneesh Barua
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| | - Lijun Qiu
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| | - Kouki Terada
- Okinawa Prefectural Institute of Health and the Environment, Biology and Ecology Group, Nanjo-shi, Okinawa, Japan
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa-ken, Japan
| |
Collapse
|
4
|
Kini RM. Accelerated evolution of toxin genes: Exonization and intronization in snake venom disintegrin/metalloprotease genes. Toxicon 2018; 148:16-25. [PMID: 29634956 DOI: 10.1016/j.toxicon.2018.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
Toxin genes in animals undergo accelerated evolution compared to non-toxin genes to be effective and competitive in prey capture, as well as to enhance their predator defense. Several mechanisms have been proposed to explain this unusual phenomenon. These include (a) frequent mutations in exons compared to introns and nonsynonymous substitutions in exons; (b) high frequency of point mutations are due to the presence of more unstable triplets in exons compared to introns; (c) Accelerated Segment Switch in Exons to alter Targeting (ASSET); (d) Rapid Accumulation of Variations in Exposed Residues (RAVERs); (e) alteration in intron-exon boundary; (f) deletion of exon; and (g) loss/gain of domains through recombination. By systematic analyses of snake venom disintegrin/metalloprotease genes, I describe a new mechanism in the evolution of these genes through exonization and intronization. In the evolution of RTS/KTS disintegrins, a new exon (10a) is formed in intron 10 of the disintegrin/metalloprotease gene. Unlike more than 90% new exons that are from repetitive elements in introns, exon 10a originated from a non-repetitive element. To incorporate exon 10a, part of the exon 11 is intronized to retain the open reading frame. This is the first case of simultaneous exonization and intronization within a single gene. This new mechanism alters the function of toxins through drastic changes to the molecular surface via insertion of new exons and deletion of exons.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Webb DR. Soluble Immune Response Suppressor (SIRS): Reassessing the immunosuppressant potential of an elusive peptide. Biochem Pharmacol 2016; 117:1-9. [PMID: 27038657 DOI: 10.1016/j.bcp.2016.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/28/2016] [Indexed: 11/30/2022]
Abstract
A previously studied immunosuppressive cytokine, Soluble Immune Response Suppressor (SIRS), may have relevance to current studies of immune suppression in a variety of human disease states. Despite extensive efforts using experimental models, mainly in mice, much remains to be discovered as to how autoimmune cells in mice and humans escape normal regulation and, conversely, how tumor cells evade evoking an immune response. It is the contention of this commentary that the literature pre-2000 contain results that might inform current studies. The broadly immunosuppressive protein, SIRS, was studied extensively from the 1970s to 1990s and culminated in the determination of the n-terminal 21mer sequence of this 15kDa protein which had high homology to the short neurotoxins from sea snakes, that are canonical members of the three finger neurotoxin superfamily (3FTx). It was not until 2007 that the prophylactic administration of the synthetic N-terminal peptide of the SIRS 21mer, identical to the published sequence, was reported to inhibit or delay the development of two autoimmune diseases in mice: experimental allergic encephalomyelitis (EAE) and type I diabetes (T1D). These findings were consistent with other studies of the 3FTx superfamily as important probes in the study of mammalian pharmacology. It is the perspective of this commentary that SIRS, SIRS peptide and the anti-peptide mAb, represent useful, pharmacologically-active probes for the study of the immune response as well as in the potential treatment of autoimmune, inflammatory diseases and cancer.
Collapse
Affiliation(s)
- David R Webb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States.
| |
Collapse
|
6
|
Roy SW. Is Mutation Random or Targeted?: No Evidence for Hypermutability in Snail Toxin Genes. Mol Biol Evol 2016; 33:2642-7. [PMID: 27486220 DOI: 10.1093/molbev/msw140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ever since Luria and Delbruck, the notion that mutation is random with respect to fitness has been foundational to modern biology. However, various studies have claimed striking exceptions to this rule. One influential case involves toxin-encoding genes in snails of the genus Conus, termed conotoxins, a large gene family that undergoes rapid diversification of their protein-coding sequences by positive selection. Previous reconstructions of the sequence evolution of conotoxin genes claimed striking patterns: (1) elevated synonymous change, interpreted as being due to targeted "hypermutation" in this region; (2) elevated transversion-to-transition ratios, interpreted as reflective of the particular mechanism of hypermutation; and (3) much lower rates of synonymous change in the codons encoding several highly conserved cysteine residues, interpreted as strong position-specific codon bias. This work has spawned a variety of studies on the potential mechanisms of hypermutation and on causes for cysteine codon bias, and has inspired hypermutation hypotheses for various other fast-evolving genes. Here, I show that all three findings are likely to be artifacts of statistical reconstruction. First, by simulating nonsynonymous change I show that high rates of dN can lead to overestimation of dS. Second, I show that there is no evidence for any of these three patterns in comparisons of closely related conotoxin sequences, suggesting that the reported findings are due to breakdown of statistical methods at high levels of sequence divergence. The current findings suggest that mutation and codon bias in conotoxin genes may not be atypical, and that random mutation and selection can explain the evolution of even these exceptional loci.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, San Francisco State University
| |
Collapse
|
7
|
Malhotra A, Creer S, Harris JB, Thorpe RS. The importance of being genomic: Non-coding and coding sequences suggest different models of toxin multi-gene family evolution. Toxicon 2015; 107:344-58. [DOI: 10.1016/j.toxicon.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
8
|
Aird SD, Aggarwal S, Villar-Briones A, Tin MMY, Terada K, Mikheyev AS. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. BMC Genomics 2015; 16:647. [PMID: 26315097 PMCID: PMC4552096 DOI: 10.1186/s12864-015-1832-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
Background While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Results Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (<0.05 %). Hybrids produced most proteins found in both parental venoms. Protein evolutionary rates were positively correlated with transcriptomic and proteomic abundances, and the most abundant proteins showed positive selection. This pattern holds with the addition of four other published crotaline transcriptomes, from two more genera, and also for the recently published king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Conclusions Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we hypothesize that as a result of natural selection, snakes optimize return on energetic investment by producing more of venom proteins that increase their fitness. Natural selection then acts on the additive genetic variance of these components, in proportion to their contributions to overall fitness. Adaptive evolution of venoms may occur most rapidly through changes in expression levels that alter fitness contributions, and thus the strength of selection acting on specific secretome components. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1832-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven D Aird
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan.
| | - Shikha Aggarwal
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan. .,University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Alejandro Villar-Briones
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan.
| | - Mandy Man-Ying Tin
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan.
| | - Kouki Terada
- Okinawa Prefectural Institute of Health and the Environment, Biology and Ecology Group, 2003 Ozato, Ozato, Nanjo-shi, Okinawa, 901-1202, Japan.
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken, 904-0412, Japan. .,Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
9
|
Reyes-Velasco J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell NR, Mackessy SP, Castoe TA. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol Biol Evol 2014; 32:173-83. [PMID: 25338510 DOI: 10.1093/molbev/msu294] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression.
Collapse
Affiliation(s)
| | - Daren C Card
- Department of Biology, University of Texas at Arlington
| | | | - Kyle J Shaney
- Department of Biology, University of Texas at Arlington
| | | | | | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Todd A Castoe
- Department of Biology, University of Texas at Arlington
| |
Collapse
|
10
|
A novel coding method for gene mutation correction during protein translation process. J Theor Biol 2012; 296:33-40. [PMID: 22172530 DOI: 10.1016/j.jtbi.2011.11.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/25/2011] [Accepted: 11/30/2011] [Indexed: 11/20/2022]
Abstract
In gene expression, gene mutations often lead to negative effect of protein translation in prokaryotic organisms. With consideration of the influences produced by gene mutation, a novel method based on error-correction coding theory is proposed for modeling and detection of translation initiation in this paper. In the proposed method, combined with a one-dimensional codebook from block coding, a decoding method based on the minimum hamming distance is designed for analysis of translation efficiency. The results show that the proposed method can recognize the biologically significant regions such as Shine-Dalgarno region within the mRNA leader sequences effectively. Also, a global analysis of single base and multiple bases mutations of the Shine-Dalgarno sequences are established. Compared with other published experimental methods for mutation analysis, the translation initiation can not be disturbed by multiple bases mutations using the proposed method, which shows the effectiveness of this method in improving the translation efficiency and its biological relevance for genetic regulatory system.
Collapse
|
11
|
Moura-da-Silva AM, Furlan MS, Caporrino MC, Grego KF, Portes-Junior JA, Clissa PB, Valente RH, Magalhães GS. Diversity of metalloproteinases in Bothrops neuwiedi snake venom transcripts: evidences for recombination between different classes of SVMPs. BMC Genet 2011; 12:94. [PMID: 22044657 PMCID: PMC3217872 DOI: 10.1186/1471-2156-12-94] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/01/2011] [Indexed: 11/24/2022] Open
Abstract
Background Snake venom metalloproteinases (SVMPs) are widely distributed in snake venoms and are versatile toxins, targeting many important elements involved in hemostasis, such as basement membrane proteins, clotting proteins, platelets, endothelial and inflammatory cells. The functional diversity of SVMPs is in part due to the structural organization of different combinations of catalytic, disintegrin, disintegrin-like and cysteine-rich domains, which categorizes SVMPs in 3 classes of precursor molecules (PI, PII and PIII) further divided in 11 subclasses, 6 of them belonging to PII group. This heterogeneity is currently correlated to genetic accelerated evolution and post-translational modifications. Results Thirty-one SVMP cDNAs were full length cloned from a single specimen of Bothrops neuwiedi snake, sequenced and grouped in eleven distinct sequences and further analyzed by cladistic analysis. Class P-I and class P-III sequences presented the expected tree topology for fibrinolytic and hemorrhagic SVMPs, respectively. In opposition, three distinct segregations were observed for class P-II sequences. P-IIb showed the typical segregation of class P-II SVMPs. However, P-IIa grouped with class P-I cDNAs presenting a 100% identity in the 365 bp at their 5' ends, suggesting post-transcription events for interclass recombination. In addition, catalytic domain of P-IIx sequences segregated with non-hemorrhagic class P-III SVMPs while their disintegrin domain grouped with other class P-II disintegrin domains suggesting independent evolution of catalytic and disintegrin domains. Complementary regions within cDNA sequences were noted and may participate in recombination either at DNA or RNA levels. Proteins predicted by these cDNAs show the main features of the correspondent classes of SVMP, but P-IIb and P-IIx included two additional cysteines cysteines at the C-termini of the disintegrin domains in positions not yet described. Conclusions In B. neuwiedi venom gland, class P-II SVMPs were represented by three different types of transcripts that may have arisen by interclass recombination with P-I and P-III sequences after the divergence of the different classes of SVMPs. Our observations indicate that exon shuffling or post-transcriptional mechanisms may be driving these recombinations generating new functional possibilities for this complex group of snake toxins.
Collapse
|
12
|
Lei W, Zhang Y, Yu G, Jiang P, He Y, Lee W, Zhang Y. Cloning and sequence analysis of an Ophiophagus hannah cDNA encoding a precursor of two natriuretic peptide domains. Toxicon 2011; 57:811-6. [PMID: 21334357 DOI: 10.1016/j.toxicon.2011.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 11/16/2022]
Abstract
The king cobra (Ophiophagus hannah) is the largest venomous snake. Despite the components are mainly neurotoxins, the venom contains several proteins affecting blood system. Natriuretic peptide (NP), one of the important components of snake venoms, could cause local vasodilatation and a promoted capillary permeability facilitating a rapid diffusion of other toxins into the prey tissues. Due to the low abundance, it is hard to purify the snake venom NPs. The cDNA cloning of the NPs become a useful approach. In this study, a 957 bp natriuretic peptide-encoding cDNA clone was isolated from an O. hannah venom gland cDNA library. The open-reading frame of the cDNA encodes a 210-amino acid residues precursor protein named Oh-NP. Oh-NP has a typical signal peptide sequence of 26 amino acid residues. Surprisingly, Oh-NP has two typical NP domains which consist of the typical sequence of 17-residue loop of CFGXXDRIGC, so it is an unusual NP precursor. These two NP domains share high amino acid sequence identity. In addition, there are two homologous peptides of unknown function within the Oh-NP precursor. To our knowledge, Oh-NP is the first protein precursor containing two NP domains. It might belong to another subclass of snake venom NPs.
Collapse
Affiliation(s)
- Weiwei Lei
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, Kunming 650223, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Vonk FJ, Jackson K, Doley R, Madaras F, Mirtschin PJ, Vidal N. Snake venom: From fieldwork to the clinic. Bioessays 2011; 33:269-79. [DOI: 10.1002/bies.201000117] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|