1
|
From taxonomy to molecular characterization of brown spider venom: An overview focused on Loxosceles similis. Toxicon 2020; 173:5-19. [DOI: 10.1016/j.toxicon.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022]
|
2
|
Zhang Y, Schmid YRF, Luginbühl S, Wang Q, Dittrich PS, Walde P. Spectrophotometric Quantification of Peroxidase with p-Phenylene-diamine for Analyzing Peroxidase-Encapsulating Lipid Vesicles. Anal Chem 2017; 89:5484-5493. [PMID: 28415842 PMCID: PMC5681863 DOI: 10.1021/acs.analchem.7b00423] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A spectrophotometric assay for the determination of horseradish peroxidase (HRP) in aqueous solution with p-phenylenediamine (PPD, benzene-1,4-diamine) as electron donor substrate and hydrogen peroxide (H2O2) as oxidant was developed. The oxidation of PPD by HRP/H2O2 leads to the formation of Bandrowski's base ((3E,6E)-3,6-bis[(4-aminophenyl)imino]cyclohexa-1,4-diene-1,4-diamine), which can be quantified by following the increase in absorbance at 500 nm. The assay was applied for monitoring the activity of HRP inside ≈180 nm-sized lipid vesicles (liposomes), prepared from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and purified by size exclusion chromatography. Because of the high POPC bilayer permeability of PPD and H2O2, the HRP-catalyzed oxidation of PPD occurs inside the vesicles once PPD and H2O2 are added to the vesicle suspension. In contrast, if instead of PPD the bilayer-impermeable substrate ABTS2- (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)) is used, the oxidation of ABTS2- inside the vesicles does not occur. Therefore, using PPD and ABTS2- in separate assays allows distinguishing between vesicle-trapped HRP and HRP in the external bulk solution. In this way, the storage stability of HRP-containing POPC vesicles was investigated in terms of HRP leakage and activity of entrapped HRP. It was found that pH 7.0 suspensions of POPC vesicles (2.2 mM POPC) containing on average about 12 HRP molecules per vesicle are stable for at least 1 month without any significant HRP leakage, if stored at 4 °C. Such high stability is beneficial not only for bioanalytical applications but also for exploring the kinetic properties of vesicle-entrapped HRP through simple spectrophotometric absorption measurements with PPD as a sensitive and cheap substrate.
Collapse
Affiliation(s)
- Ya Zhang
- Polymer Chemistry Group, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
- Key Laboratory of Science and Technology of Eco-Textile, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Yannick R. F. Schmid
- Bioanalytics Group, Department of Biosystems Science and Engineering, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Sandra Luginbühl
- Polymer Chemistry Group, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Petra S. Dittrich
- Bioanalytics Group, Department of Biosystems Science and Engineering, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Peter Walde
- Polymer Chemistry Group, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
3
|
Dantas AE, Carmo AO, Horta CCR, Leal HG, Oliveira-Mendes BBR, Martins APV, Chávez-Olórtegui C, Kalapothakis E. Description of Loxtox protein family and identification of a new group of Phospholipases D from Loxosceles similis venom gland. Toxicon 2016; 120:97-106. [PMID: 27496061 DOI: 10.1016/j.toxicon.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
Envenoming resulting from Loxosceles spider bites (loxoscelism) is a recognized public health problem in Brazil. However, the pathophysiology of loxoscelism caused by L. similis bites, which is widespread in Brazil, remains poorly understood. In the present work, the RNA sequencing (RNA-Seq - Next Generation sequencing - NGS) of the L. similis venom gland was performed to identify and analyze the sequences of the key component phospholipase D. The sequences were aligned based on their classical domains, and a phylogenetic tree was constructed. In the bioinformatics analysis, 23 complete sequences of phospholipase D proteins were found and classified as Loxtox proteins, as they contained the characteristic domains of phospholipase D: the active site, the Mg(2+)-binding domain, and the catalytic loop. Three phospholipase D sequences with non-canonical domains were also found in this work. They were analyzed separately and named PLDs from L. similis (PLD-Ls). This study is the first to characterize phospholipase D sequences from Loxosceles spiders by RNA-Seq. These results contribute new knowledge about the composition of L. similis venom, revealing novel tools that could be used for pharmacological, immunological, and biotechnological applications.
Collapse
Affiliation(s)
- Arthur Estanislau Dantas
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - A O Carmo
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Mestrado Profissional em Biotecnologia e Gestão da Inovação, Centro Universitário de Sete Lagoas, Sete Lagoas, 35701-242, Minas Gerais, Brazil.
| | - Hortênsia Gomes Leal
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | | | - Ana Paula Vimieiro Martins
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Ullah A, Magalhães GS, Masood R, Mariutti RB, Coronado MA, Murakami MT, Barbaro KC, Arni RK. Crystallization and preliminary X-ray diffraction analysis of a novel sphingomyelinase D from Loxosceles gaucho venom. Acta Crystallogr F Struct Biol Commun 2014; 70:1418-20. [PMID: 25286953 PMCID: PMC4188093 DOI: 10.1107/s2053230x14019207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/25/2014] [Indexed: 11/10/2022] Open
Abstract
Brown spider envenomation results in dermonecrosis, intravascular coagulation, haemolysis and renal failure, mainly owing to the action of sphingomyelinases D (SMases D), which catalyze the hydrolysis of sphingomyelin to produce ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidylcholine to produce lysophosphatidic acid. Here, the heterologous expression, purification, crystallization and preliminary X-ray diffraction analysis of LgRec1, a novel SMase D from Loxosceles gaucho venom, are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 52.98, b = 62.27, c = 84.84 Å and diffracted to a maximum resolution of 2.6 Å.
Collapse
Affiliation(s)
- Anwar Ullah
- Multiuser Center for Biomolecular Innovation, Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| | - Geraldo Santana Magalhães
- Laboratorio de Imunopatologia Divisão de Desenvolvimento Científico, Instituto Butantan, Avenida Dr Vital Brasil 1500, São Paulo 05503-900, Brazil
| | - Rehana Masood
- Multiuser Center for Biomolecular Innovation, Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| | - Ricardo Barros Mariutti
- Multiuser Center for Biomolecular Innovation, Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| | - Monika Aparecida Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| | - Mário Tyago Murakami
- Laboratório Nacional de Biociências (LNBio) Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Katia Cristina Barbaro
- Laboratorio de Imunopatologia Divisão de Desenvolvimento Científico, Instituto Butantan, Avenida Dr Vital Brasil 1500, São Paulo 05503-900, Brazil
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, UNESP/IBILCE, Rua Cristovão Colombo 2265, São José Do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
5
|
Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins. Toxicon 2014; 83:91-120. [DOI: 10.1016/j.toxicon.2014.02.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/19/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022]
|
6
|
Vuitika L, Gremski LH, Belisário-Ferrari MR, Chaves-Moreira D, Ferrer VP, Senff-Ribeiro A, Chaim OM, Veiga SS. Brown spider phospholipase-D containing a conservative mutation (D233E) in the catalytic site: identification and functional characterization. J Cell Biochem 2014; 114:2479-92. [PMID: 23733617 DOI: 10.1002/jcb.24594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/07/2013] [Indexed: 11/07/2022]
Abstract
UNLABELLED Brown spider (Loxosceles genus) bites have been reported worldwide. The venom contains a complex composition of several toxins, including phospholipases-D. Native or recombinant phospholipase-D toxins induce cutaneous and systemic loxoscelism, particularly necrotic lesions, inflammatory response, renal failure, and hematological disturbances. Herein, we describe the cloning, heterologous expression and purification of a novel phospholipase-D toxin, LiRecDT7 in reference to six other previously described in phospholipase-D toxin family. The complete cDNA sequence of this novel brown spider phospholipase-D isoform was obtained and the calculated molecular mass of the predicted mature protein is 34.4 kDa. Similarity analyses revealed that LiRecDT7 is homologous to the other dermonecrotic toxin family members particularly to LiRecDT6, sharing 71% sequence identity. LiRecDT7 possesses the conserved amino acid residues involved in catalysis except for a conservative mutation (D233E) in the catalytic site. Purified LiRecDT7 was detected as a soluble 36 kDa protein using anti-whole venom and anti-LiRecDT1 sera, indicating immunological cross-reactivity and evidencing sequence-epitopes identities similar to those of other phospholipase-D family members. Also, LiRecDT7 exhibits sphingomyelinase activity in a concentration dependent-manner and induces experimental skin lesions with swelling, erythema and dermonecrosis. In addition, LiRecDT7 induced a massive inflammatory response in rabbit skin dermis, which is a hallmark of brown spider venom phospholipase-D toxins. Moreover, LiRecDT7 induced in vitro hemolysis in human erythrocytes and increased blood vessel permeability. These features suggest that this novel member of the brown spider venom phospholipase-D family, which naturally contains a mutation (D233E) in the catalytic site, could be useful for future structural and functional studies concerning loxoscelism and lipid biochemistry. HIGHLIGHTS 1- Novel brown spider phospholipase-D recombinant toxin contains a conservative mutation (D233E) on the catalytic site. 2-LiRecDT7 shares high identity level with isoforms of Loxosceles genus. 3-LiRecDT7 is a recombinant protein immunodetected by specific antibodies to native and recombinant phospholipase-D toxins. 4-LiRecDT7 shows sphingomyelinase-D activity in a concentration-dependent manner, but less intense than other isoforms. 5-LiRecDT7 induces dermonecrosis and inflammatory response in rabbit skin. 6-LiRecDT7 increases vascular permeability in mice. 7-LiRecDT7 triggers direct complement-independent hemolysis in erythrocytes.
Collapse
Affiliation(s)
- Larissa Vuitika
- Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Stock RP, Brewer J, Wagner K, Ramos-Cerrillo B, Duelund L, Jernshøj KD, Olsen LF, Bagatolli LA. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate. PLoS One 2012; 7:e36003. [PMID: 22558302 PMCID: PMC3338491 DOI: 10.1371/journal.pone.0036003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/29/2012] [Indexed: 12/11/2022] Open
Abstract
The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.
Collapse
Affiliation(s)
- Roberto P. Stock
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Membrane Biophysics and Biophotonics Group/MEMPHYS, Department of Biochemistry and Molecular Biology, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Jonathan Brewer
- Membrane Biophysics and Biophotonics Group/MEMPHYS, Department of Biochemistry and Molecular Biology, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Kerstin Wagner
- Membrane Biophysics and Biophotonics Group/MEMPHYS, Department of Biochemistry and Molecular Biology, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Blanca Ramos-Cerrillo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lars Duelund
- MEMPHYS, Department of Physics, Chemistry and Pharmacy, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Kit Drescher Jernshøj
- Cellular Complexity Group (CelCom), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lars Folke Olsen
- Cellular Complexity Group (CelCom), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Luis A. Bagatolli
- Membrane Biophysics and Biophotonics Group/MEMPHYS, Department of Biochemistry and Molecular Biology, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
8
|
Chatzaki M, Horta CC, Almeida MO, Pereira NB, Mendes TM, Dias-Lopes C, Guimarães G, Moro L, Chávez-Olórtegui C, Horta MCR, Kalapothakis E. Cutaneous loxoscelism caused by Loxosceles similis venom and neutralization capacity of its specific antivenom. Toxicon 2012; 60:21-30. [PMID: 22465492 DOI: 10.1016/j.toxicon.2012.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/24/2012] [Accepted: 03/06/2012] [Indexed: 11/19/2022]
Abstract
Members of the spider genus Loxosceles pose a marked health risk to humans because of the seriousness of the necrotic and systemic effects of their bite, known as loxoscelism. The recent confirmation of Loxosceles similis in residences of Belo Horizonte in Minas Gerais Province, Brazil increases the local potential risk of loxoscelism at higher levels. The first characterization of the venom from this species showed that its main biological effects had a similar intensity as other species (e.g. Loxosceles intermedia, Loxosceles laeta, and Loxosceles gaucho). Therefore, we wished to further analyse the biological activity of the L. similis venom as well as the capacity of anti-L. similis-venom serum to reduce dermonecrotic effects to rabbit skin. Histological analysis of rabbit skin 2, 4 and 8h after intradermal injection of L. similis venom demonstrated a dense inflammatory infiltrate, edema, degeneration and necrosis of the skin muscle, dissociation of collagen fibers, and disruption of reticular fibers. Importantly, pre-incubation of the venom with anti-L. similis-venom serum significantly decreased all of these effects. Anti-L. similis antivenom generated antibodies that were strongly reactive to L. similis venom and capable of neutralizing the dermonecrotic effects in rabbits caused by this venom. Moreover, the antivenom significantly reduced the sphingomyelinase activity of L. similis crude venom. Venoms produced by male and female spiders were equally reactive towards anti-L. similis and anti-L. intermedia antivenoms, but female venom induced larger lesions on rabbits. In contrast, female venom acted as an immunization enhancer and protected animals from L. similis envenomation to a greater degree than male venom. In conclusion, the results shown in this study for L. similis antivenom merits a more in depth study of its properties, which may become a valuable tool against loxoscelism.
Collapse
Affiliation(s)
- M Chatzaki
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|