1
|
Montealegre-Sánchez L, Lima MA, Montoya-Gómez A, Solano-Redondo L, Silva DO, Alves Pereira KM, Lima Mota MR, Silveira ER, de Sousa Brasil NVGP, Alves Filho EG, Havt A, Jiménez-Charris E. Time-Course physiopathology of Porthidium lansbergii lansbergii Envenomation in Swiss Webster Mice: Insights into Systemic Manifestations. Sci Prog 2025; 108:368504241304205. [PMID: 39763189 PMCID: PMC11705321 DOI: 10.1177/00368504241304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVE The expansion of human activities in northern Colombia has increased human-snake encounters, particularly with venomous Porthidium lansbergii lansbergii. Given the limited knowledge of systemic envenomation effects and previous studies focusing only on early murine symptoms, this investigation aimed to describe the time-course physiopathology of P. lansbergii lansbergii envenomation following intramuscular injection in vivo. METHODS Venom was inoculated in the gastrocnemius muscles of Swiss Webster mice, and blood, urine, and tissue samples were taken at different times to evaluate lethality and biochemical markers of renal function and oxidative stress. RESULTS This study reports the first intramuscular LD50 for P. lansbergii lansbergii venom at 24.83 mg/Kg. Administering 80% of this LD50 induced early signs of renal injury, evidenced by urinary biomarkers over 24 h. The antioxidant activity was found at low levels in kidney tissue throughout the evaluated time post-envenomation. Malondialdehyde activity increased at the earliest point, while proinflammatory activity increased later. Urine metabolomics revealed elevated taurine and allantoin in the envenomed groups. DISCUSSION Compensatory mechanisms in response to oxidative stress and tissue damage induced by the venom were evident in the envenomed mice over the evaluated time. However, histological analysis revealed evidence of pro-inflammatory processes occurring only at early times. Metabolomic analyses of urine samples identified taurine as a potential early biomarker of elevated oxidative stress and protein and creatinine levels. CONCLUSIONS P. lansbergii lansbergii venom induces alterations in murine renal tissue, affecting urinary biomarkers of kidney function within hours post-envenomation. Delayed proinflammatory effects may suggest an antioxidant imbalance in the envenomed mice, with unknown long-term effects. Further research on the role of oxidative stress and inflammation in renal structure and function following envenomation is necessary, emphasizing the need for prompt clinical management.
Collapse
Affiliation(s)
- Leonel Montealegre-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali, Colombia
- Grupo de investigaciones en Ingeniería Biomédica-GBIO, Facultad de Ingeniería, Universidad Autónoma de Occidente, Cali, Colombia
| | - Mikael A. Lima
- Departamento de Fisiologia e Farmacologia – Laboratório de Toxinologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Luis Solano-Redondo
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - Dayara O. Silva
- Departamento de Fisiologia e Farmacologia – Laboratório de Toxinologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Mario R. Lima Mota
- Departamento de Clínica Odontológica, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | | | - Alexandre Havt
- Departamento de Fisiologia e Farmacologia – Laboratório de Toxinologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | |
Collapse
|
2
|
Bennacer A, Boukhalfa-Abib H, Laraba-Djebari F. "Computational and Functional Characterization of a Hemorrhagic Metalloproteinase Purified from Cerastes cerastes Venom". Protein J 2021; 40:589-599. [PMID: 34019197 DOI: 10.1007/s10930-021-09994-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Structural and functional aspects of snake venoms metalloproteinases (SVMPs) have been extensively studied due to their role in envenomation. However, in the detection of certain coagulation disorders these biomolecules have been used and applied for the production of new thrombolytic drugs. CcMP-II, a SVMP-II metalloproteinase with a hemorrhagic activity, isolated from the venom of Cerastes cerastes, its sequence of 472 amino acids was identified. Predicted 3D structure showed an arrangement of CcMP-II into two distinct domains: i) a metalloproteinase domain where the zinc-binding motif is found (HXXGHNLGIDH) in addition to the sequence Cys-Ile-Met (CIM) at the Met-turn and ii) disintegrin-like domain containing RGD motif. CcMP-II inhibits platelet aggregation induced by collagen in a dose-dependent manner with an IC50 value estimated of 0.11 nM. This proteinase inhibits also aggregation of platelet stimulated by collagen even if the metal chelating agents (EDTA and 1, 10-phenontroline) are present suggesting that anti-aggregating effect is not due to its metalloproteinase domain, but to its disintegrin-like domain. Capillary pathological modifications caused by CcMP-II following intramuscular injection have as well been examined in mice. The key morphological alterations of the capillary vessels were clearly apparent from the ultrastructural study. The CcMP-II can play a key function in the pathogenesis of disorders that occurs following envenomation of Cerastes cerastes. The three-dimensional model of CcMP-II was built to explain structure-function relationships in ADAM/ADAMTs, a family of proteins having significant therapeutic potential. In order to explain structure-function relationships in ADAM / ADAMT, a family of proteins with considerable therapeutic potential, the three-dimensional model of CcMP-II was constructed.
Collapse
Affiliation(s)
- Amel Bennacer
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria
| | - Hinda Boukhalfa-Abib
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| |
Collapse
|
3
|
De arco-Rodríguez B, Montealegre-Sánchez L, Solano-Redondo L, Castro-Herrera F, Ortega JG, Castillo A, Vargas-Zapata C, Jiménez-Charris E. Phylogeny and toxicological assessments of two Porthidium lansbergii lansbergii morphotypes from the caribbean region of Colombia. Toxicon 2019; 166:56-65. [DOI: 10.1016/j.toxicon.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 11/27/2022]
|
4
|
Boukhalfa-Abib H, Laraba-Djebari F. CcMP-II, a new hemorrhagic metalloproteinase from Cerastes cerastes snake venom: purification, biochemical characterization and amino acid sequence analysis. Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:65-73. [PMID: 25251459 DOI: 10.1016/j.cbpc.2014.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Snake venom metalloproteinases (SVMPs) are the most abundant components in snake venoms. They are important in the induction of systemic alterations and local tissue damage after envenomation. CcMP-II, which is a metalloproteinase purified from Cerastes cerastes snake venom, was obtained by a combination of gel filtration, ion-exchange and affinity chromatographies. It was homogeneous on SDS-PAGE, with a molecular mass estimated to 35kDa and presents a pI of 5.6. CcMP-II has an N-terminal sequence of EDRHINLVSVADHRMXTKY, with high levels of homology with those of the members of class P-II of SVMPs, which comprises metalloproteinase and disintegrin-like domains together. This proteinase displayed a fibrinogenolytic and hemorrhagic activities. The proteolytic and hemorrhagic activities of CcMP-II were inhibited by EDTA and 1,10-phenanthroline. However, these activities were not affected by aprotinine and PMSF, suggesting that CcMP-II is a zinc-dependent hemorrhagic metalloproteinase with an α-fibrinogenase activity. The hemorrhagic metalloproteinase CcMP-II was also able to hydrolyze extracellular matrix components, such as type IV collagen and laminin. These results indicate that CcMP-II is implicated in the local and systemic bleeding, contributing thus in the toxicity of C. cerastes venom.
Collapse
Affiliation(s)
- Hinda Boukhalfa-Abib
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria.
| |
Collapse
|
5
|
Jiménez-Charris E, Montealegre-Sanchez L, Solano-Redondo L, Mora-Obando D, Camacho E, Castro-Herrera F, Fierro-Pérez L, Lomonte B. Proteomic and functional analyses of the venom of Porthidium lansbergii lansbergii (Lansberg's hognose viper) from the Atlantic Department of Colombia. J Proteomics 2015; 114:287-99. [DOI: 10.1016/j.jprot.2014.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 11/29/2022]
|
6
|
Huancahuire-Vega S, Ponce-Soto LA, Marangoni S. PhTX-II a basic myotoxic phospholipase A₂ from Porthidium hyoprora snake venom, pharmacological characterization and amino acid sequence by mass spectrometry. Toxins (Basel) 2014; 6:3077-97. [PMID: 25365526 PMCID: PMC4247251 DOI: 10.3390/toxins6113077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/10/2023] Open
Abstract
A monomeric basic PLA₂ (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA₂ enzyme class and displays conserved domains as the catalytic network, Ca²⁺-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA₂ showed an allosteric behavior and its enzymatic activity was dependent on Ca²⁺. Examination of PhTX-II PLA₂ by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA₂ causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA₂ that contributes with toxic actions caused by P. hyoprora venom.
Collapse
Affiliation(s)
- Salomón Huancahuire-Vega
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil.
| | - Luis Alberto Ponce-Soto
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil.
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
7
|
Girón ME, Guerrero B, Salazar AM, Sánchez EE, Alvarez M, Rodríguez-Acosta A. Functional characterization of fibrinolytic metalloproteinases (colombienases) isolated from Bothrops colombiensis venom. Toxicon 2013; 74:116-26. [PMID: 23958522 DOI: 10.1016/j.toxicon.2013.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Researchers trying to improve the safety and efficacy of fibrinolytic therapy have been isolating fibrinolytic enzymes from snake venoms. Two fibrinolytic enzymes, colombienases 1 and 2, with significant activity have been isolated from the venom of Bothrops colombiensis. METHODS The colombienases were characterized for various biological activities which include hemorrhagic, fibrinogenolytic, proteolytic, hemolytic, edematogenic and cytotoxic. RESULTS Colombienases directly acted on fibrin by degrading fibrinogen Aα and Bβ chains without activating the fibrinolytic system (plasminogen/plasmin), additionally colombienase-2 degraded fibrinogen γ chains as well as the fibronectin molecule. Laminin and type IV collagen were colombienases resistant. Gelatin-zymogram activity was present in B. colombiensis venom (BcV) bands between 64 and 148 kDa. All activities were abolished by metalloproteinases inhibitors. Both enzymes lacked hemorrhagic, hemolytic, cytotoxic, plasminogen activator and coagulant activities. CONCLUSIONS Both colombienases had direct fibrino(geno)lytic activity without other toxic side effects including in vivo hemorrhaging, which could be promising in terms of therapeutic potential as thrombolytic agents.
Collapse
Affiliation(s)
- María E Girón
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Girón ME, Rodríguez-Acosta A, Salazar AM, Sánchez EE, Galán J, Ibarra C, Guerrero B. Isolation and characterization of two new non-hemorrhagic metalloproteinases with fibrinogenolytic activity from the mapanare (Bothrops colombiensis) venom. Arch Toxicol 2012; 87:197-208. [PMID: 22918489 DOI: 10.1007/s00204-012-0914-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
Abstract
Colombienases are acidic, low molecular weight metalloproteinases (Mr of 23,074.31 Da colombienase-1 and 23,078.80 Da colombienase-2; pI of 6.0 and 6.2, respectively) isolated from Bothrops colombiensis snake venom. The chromatographic profile in RP-HPLC and its partial sequence confirmed its high homogeneity. Both colombienases present fibrino(geno)lytic activity, but did not show any hemorrhagic, amidolytic, plasminogen activator or coagulant activities, and no effect on platelet aggregation induced by collagen or ADP. Both enzymes were strongly active on fibrinogen Aα chains followed by the Bβ chains, and colombienases-2, at high doses, also degraded the γ chains. This activity was stable at temperatures ranging between 4 and 37 °C, with a maximum activity at 25 °C, and at pHs between 7 and 9. The homology demonstrated by the comparison of sequences, with zinc-dependent metalloproteinases, as well as the metal chelant effects on, confirmed that the colombienases were metalloproteinases, particularly to α-fibrinogenases belonging to the P-I class of SVPMs (20-30 kDa), which contain only the single-domain proteins. The biological characteristics of the colombienases confer a therapeutic potential, since they contain a high fibrino(geno)lytic activity, devoid of hemorrhagic activity. These metalloproteinases might be explored as thrombolytic agents given that they dissolve fibrin clots or prevent their formation.
Collapse
Affiliation(s)
- María E Girón
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
10
|
Vargas LJ, Londoño M, Quintana JC, Rua C, Segura C, Lomonte B, Núñez V. An acidic phospholipase A₂ with antibacterial activity from Porthidium nasutum snake venom. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:341-7. [PMID: 22251437 DOI: 10.1016/j.cbpb.2011.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
Abstract
Snake venoms are complex mixtures of proteins among which both basic and acidic phospholipases A(2) (PLA(2)s) can be found. Basic PLA(2)s are usually responsible for major toxic effects induced by snake venoms, while acidic PLA(2)s tend to have a lower toxicity. A novel PLA(2), here named PnPLA(2), was purified from the venom of Porthidium nasutum by means of RP-HPLC on a C18 column. PnPLA(2) is an acidic protein with a pI of 4.6, which migrates as a single band under both non-reducing and reducing conditions in SDS-PAGE. PnPLA(2) had a molecular mass of 15,802.6 Da, determined by ESI-MS. Three tryptic peptides of this protein were characterized by HPLC-nESI-MS/MS, and N-terminal sequencing by direct Edman degradation showing homology to other acidic PLA(2)s from viperid venoms. PnPLA(2) displayed indirect hemolytic activity in agarose erythrocyte-egg yolk gels and bactericidal activity against Staphylococcus aureus in a dose-dependent manner, with a MIC and MBC of 32 μg/mL. In addition, PnPLA(2) showed a potent inhibitory effect on platelet aggregation with doses up to 40 μg/mL. This acidic PLA(2), in contrast to basic enzymes isolated from other viperid snake venoms, was not cytotoxic to murine skeletal muscle myoblasts C(2)C(12). This is the first report on a bactericidal protein of Porthidium nasutum venom.
Collapse
Affiliation(s)
- Leidy Johana Vargas
- Programa Ofidismo/Escorpionismo, Universidad de Antioquia, Street 62 No. 52-59, A.A. 1226, Medellín, Colombia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kurtović T, Brgles M, Leonardi A, Balija ML, Križaj I, Allmaier G, Marchetti-Deschmann M, Halassy B. Ammodytagin, a heterodimeric metalloproteinase from Vipera ammodytes ammodytes venom with strong hemorrhagic activity. Toxicon 2011; 58:570-82. [DOI: 10.1016/j.toxicon.2011.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/11/2011] [Accepted: 09/08/2011] [Indexed: 11/29/2022]
|