1
|
Germoush MO, Fouda M, Aly H, Saber I, Alrashdi BM, Massoud D, Alzwain S, Altyar AE, Abdel-Daim MM, Sarhan M. Proteomic analysis of the venom of Conus flavidus from Red Sea reveals potential pharmacological applications. J Genet Eng Biotechnol 2024; 22:100375. [PMID: 38797555 PMCID: PMC11066669 DOI: 10.1016/j.jgeb.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Venomous marine cone snails produce unique neurotoxins called conopeptides or conotoxins, which are valuable for research and drug discovery. Characterizing Conus venom is important, especially for poorly studied species, as these tiny and steady molecules have considerable potential as research tools for detecting new pharmacological applications. In this study, a worm-hunting cone snail, Conus flavidus inhabiting the Red Sea coast were collected, dissected and the venom gland extraction was subjected to proteomic analysis to define the venom composition, and confirm the functional structure of conopeptides. RESULTS Analysis of C. flavidus venom identified 117 peptide fragments and assorted them to conotoxin precursors and non-conotoxin proteins. In this procedure, 65 conotoxin precursors were classified and identified to 16 conotoxin precursors and hormone superfamilies. In the venom of C. flavidus, the four conotoxin superfamilies T, A, O2, and M were the most abundant peptides, accounting for 75.8% of the total conotoxin diversity. Additionally, 19 non-conotoxin proteins were specified in the venom, as well as several potentially biologically active peptides with putative applications. CONCLUSION Our research displayed that the structure of the C. flavidus-derived proteome is similar to other Conus species and includes toxins, ionic channel inhibitors, insulin-like peptides, and hyaluronidase. This study provides a foundation for discovering new conopeptides from C. flavidus venom for pharmaceutical use.
Collapse
Affiliation(s)
- Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia.
| | - Maged Fouda
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Hamdy Aly
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt
| | - Islam Saber
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt
| | - Barakat M Alrashdi
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Sarah Alzwain
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Moustafa Sarhan
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt; Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Saudi Arabia
| |
Collapse
|
2
|
Pang B, Wang H, Huang H, Liao L, Wang Y, Wang M, Du G, Kang Z. Enzymatic Production of Low-Molecular-Weight Hyaluronan and Its Oligosaccharides: A Review and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14129-14139. [PMID: 36300844 DOI: 10.1021/acs.jafc.2c05709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a nonsulfated linear glycosaminoglycan with a negative charge. Different from the high-molecular-weight HAs, the low-molecular-weight HAs (LMW-HAs, 4-120 kDa) and hyaluronan oligosaccharides (O-HAs, <4 kDa) exhibit certain unique biological properties, owing to which these have a wide range of applications in the field of medicine. However, the chemical synthesis of high-purity LMW-HAs and O-HAs requires complex procedures, which renders this process difficult to achieve. The degradation of HA is achieved under the catalysis of hyaluronidases. In recent years, various hyaluronidase genes have been identified, and their enzymatic properties have been analyzed. In this context, the present review summarizes the hyaluronidases from different sources, which have been characterized. The review focuses on the crystal structure and the catalytic mechanism underlying the biological properties of hyaluronidases. In addition, the molecular weight distributions and the preparation approaches of the enzymatic products LMW-HAs and O-HAs are described. The general orientation of the research on hyaluronidases was speculated based on the existing literature. Accordingly, the efficient large-scale production of LMW-HAs and O-HAs using the green enzymatic approach was anticipated.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., 678 Tianchen Avenue, Jinan 250010, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lizhi Liao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
3
|
Sindelar M, Jilkova J, Kubala L, Velebny V, Turkova K. Hyaluronidases and hyaluronate lyases: From humans to bacteriophages. Colloids Surf B Biointerfaces 2021; 208:112095. [PMID: 34507069 DOI: 10.1016/j.colsurfb.2021.112095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a non-sulfated negatively-charged linear polymer distributed in most parts of the human body, where it is located around cells in the extracellular matrix of connective tissues and plays an essential role in the organization of tissue architecture. Moreover, hyaluronan is involved in many biological processes and used in many clinical, cosmetic, pharmaceutic, and biotechnological applications worldwide. As interest in hyaluronan applications increases, so does interest in hyaluronidases and hyaluronate lyases, as these enzymes play a major part in hyaluronan degradation. Many hyaluronidases and hyaluronate lyases produced by eukaryotic cells, bacteria, and bacteriophages have so far been described and annotated, and their ability to cleave hyaluronan has been experimentally proven. These enzymes belong to several carbohydrate-active enzyme families, share very low sequence identity, and differ in their cleaving mechanisms and in their structural and functional properties. This review presents a summary of annotated and characterized hyaluronidases and hyaluronate lyases isolated from different sources belonging to distinct protein families, with a main focus on the binding and catalytic residues of the discussed enzymes in the context of their biochemical properties. In addition, the application potential of individual groups of hyaluronidases and hyaluronate lyases is evaluated.
Collapse
Affiliation(s)
- Martin Sindelar
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jana Jilkova
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lukas Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691, Brno, Czech Republic
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Kristyna Turkova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691, Brno, Czech Republic.
| |
Collapse
|
4
|
Saggiomo SL, Firth C, Wilson DT, Seymour J, Miles JJ, Wong Y. The Geographic Distribution, Venom Components, Pathology and Treatments of Stonefish ( Synanceia spp.) Venom. Mar Drugs 2021; 19:md19060302. [PMID: 34073964 PMCID: PMC8225006 DOI: 10.3390/md19060302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022] Open
Abstract
Stonefish are regarded as one of the most venomous fish in the world. Research on stonefish venom has chiefly focused on the in vitro and in vivo neurological, cardiovascular, cytotoxic and nociceptive effects of the venom. The last literature review on stonefish venom was published over a decade ago, and much has changed in the field since. In this review, we have generated a global map of the current distribution of all stonefish (Synanceia) species, presented a table of clinical case reports and provided up-to-date information about the development of polyspecific stonefish antivenom. We have also presented an overview of recent advancements in the biomolecular composition of stonefish venom, including the analysis of transcriptomic and proteomic data from Synanceia horrida venom gland. Moreover, this review highlights the need for further research on the composition and properties of stonefish venom, which may reveal novel molecules for drug discovery, development or other novel physiological uses.
Collapse
Affiliation(s)
- Silvia L. Saggiomo
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Correspondence:
| | - Cadhla Firth
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - David T. Wilson
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Australia
| |
Collapse
|
5
|
Isolation and characterization of Conohyal-P1, a hyaluronidase from the injected venom of Conus purpurascens. J Proteomics 2017; 164:73-84. [PMID: 28479398 DOI: 10.1016/j.jprot.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/13/2017] [Accepted: 05/02/2017] [Indexed: 11/21/2022]
Abstract
Hyaluronidases are ubiquitous enzymes commonly found in venom and their main function is to degrade hyaluran, which is the major glycosaminoglycan of the extracellular matrix in animal tissues. Here we describe the purification and characterization of a 60kDa hyaluronidase found in the injected venom from Conus purpurascens, Conohyal-P1. Using a combined strategy based on transcriptomic and proteomic analysis, we determined the Conohyal-P1 sequence. Conohyal-P1 has conserved consensus catalytic and positioning domain residues characteristic of hyaluronidases and a C-terminus EGF-like domain. Additionally, the enzyme is expressed as a mixture of glycosylated isoforms at five asparagine sites. The activity of the native Conohyal-P1 was assess MS-based methods and confirmed by classical turbidimetric methods. The MS-based assay is particularly sensitive and provides the first detailed analysis of a venom hyaluronidase activity monitored with this method. The discovery of new hyaluronidases and the development of techniques to evaluate their performance can advance several therapeutic procedures, as these enzymes are widely used for enhanced drug delivery applications. BIOLOGICAL SIGNIFICANCE Cone snail venom is a remarkable source of therapeutically important molecules, as is the case of conotoxins, which have undergone extensive clinical trials for several applications. In addition to the conotoxins, a large array of proteins have been reported in the venom of several species of cone snails, including enzymes that were found in dissected and injected Conus venom. Here we describe the isolation and characterization of the hyaluronidase Conohyal-P1 from the injected venom of C. purpurascens. We employed a combined transcriptomic and proteomic analysis to obtain the full sequence of this hyaluronidase. The activity of Conohyal-P1 was assessed by a mass spectrometry-based method, which provide the first detailed venom hyaluronidase activity analysis monitored by mass spectrometry allowing the visualization of the substrate degradation by the enzyme.
Collapse
|
6
|
Biner O, Trachsel C, Moser A, Kopp L, Langenegger N, Kämpfer U, von Ballmoos C, Nentwig W, Schürch S, Schaller J, Kuhn-Nentwig L. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei. PLoS One 2015; 10:e0143963. [PMID: 26630650 PMCID: PMC4667920 DOI: 10.1371/journal.pone.0143963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022] Open
Abstract
Structure of Cupiennius salei venom hyaluronidase Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40–60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. Function of venom hyaluronidases Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.
Collapse
Affiliation(s)
- Olivier Biner
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Aline Moser
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Lukas Kopp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Nicolas Langenegger
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Urs Kämpfer
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Wolfgang Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Johann Schaller
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Trincone A. Uncommon Glycosidases for the Enzymatic Preparation of Glycosides. Biomolecules 2015; 5:2160-83. [PMID: 26404386 PMCID: PMC4693232 DOI: 10.3390/biom5042160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 01/11/2023] Open
Abstract
Most of the reports in literature dedicated to the use of glycosyl hydrolases for the preparation of glycosides are about gluco- (α- and β-form) and galacto-sidase (β-form), reflecting the high-availability of both anomers of glucosides and of β-galactosides and their wide-ranging applications. Hence, the idea of this review was to analyze the literature focusing on hardly-mentioned natural and engineered glycosyl hydrolases. Their performances in the synthetic mode and natural hydrolytic potential are examined. Both the choice of articles and their discussion are from a biomolecular and a biotechnological perspective of the biocatalytic process, shedding light on new applicative ideas and on the assortment of biomolecular diversity. The hope is to elicit new interest for the development of biocatalysis and to gather attention of biocatalyst practitioners for glycosynthesis.
Collapse
Affiliation(s)
- Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei, 34, Pozzuoli 80078, Naples, Italy.
| |
Collapse
|
8
|
Ziegman R, Alewood P. Bioactive components in fish venoms. Toxins (Basel) 2015; 7:1497-531. [PMID: 25941767 PMCID: PMC4448160 DOI: 10.3390/toxins7051497] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/12/2023] Open
Abstract
Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules.
Collapse
Affiliation(s)
- Rebekah Ziegman
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Paul Alewood
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
9
|
Kiriake A, Madokoro M, Shiomi K. Enzymatic properties and primary structures of hyaluronidases from two species of lionfish (Pterois antennata and Pterois volitans). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1043-1053. [PMID: 24395601 DOI: 10.1007/s10695-013-9904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
Lionfish are representative venomous fish, having venomous glandular tissues in dorsal, pelvic and anal spines. Some properties and primary structures of proteinaceous toxins from the venoms of three species of lionfish, Pterois antennata, Pterois lunulata and Pterois volitans, have so far been clarified. Our recent survey established the presence of hyaluronidase, presumably a toxin-spreading factor, in the venoms of P. antennata and P. volitans. This prompted us to examine enzymatic properties and primary structures of lionfish hyaluronidases. The hyaluronidases of P. antennata and P. volitans were shown to be optimally active at pH 6.6, 37°C and 0.1 M NaCl and specifically active against hyaluronan. These enzymatic properties are almost the same as those of stonefish hyaluronidases. The primary structures (483 amino acid residues) of the lionfish hyaluronidases were elucidated by a cDNA cloning strategy using degenerate primers designed from the reported amino acid sequences of the stonefish hyaluronidases. Both lionfish hyaluronidases share as high as 99.6% of sequence identity with each other and also considerably high identities (72-77%) with the stonefish hyaluronidases but rather low identities (25-40%) with other hyaluronidases from mammals and venomous animals. In consistent with this, phylogenetic tree analysis revealed that the lionfish hyaluronidases, together with the stonefish hyaluronidases, form a cluster independently of other hyaluronidases. Nevertheless, the lionfish hyaluronidases as well as the stonefish hyaluronidases almost maintain structural features (active site, glyco_hydro_56 domain and cysteine location) observed in other hyaluronidases.
Collapse
Affiliation(s)
- Aya Kiriake
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo, 108-8477, Japan
| | | | | |
Collapse
|
10
|
Baumann K, Casewell NR, Ali SA, Jackson TNW, Vetter I, Dobson JS, Cutmore SC, Nouwens A, Lavergne V, Fry BG. A ray of venom: Combined proteomic and transcriptomic investigation of fish venom composition using barb tissue from the blue-spotted stingray (Neotrygon kuhlii). J Proteomics 2014; 109:188-98. [PMID: 24946716 DOI: 10.1016/j.jprot.2014.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED Fish venoms remain almost completely unstudied despite the large number of species. In part this is due to the inherent nature of fish venoms, in that they are highly sensitive to heat, pH, lyophilisation, storage and repeated freeze-thawing. They are also heavily contaminated with mucus, which makes proteomic study difficult. Here we describe a novel protein-handling protocol to remove mucus contamination, utilising ammonium sulphate and acetone precipitation. We validated this approach using barb venom gland tissue protein extract from the blue-spotted stingray Neotrygon kuhlii. We analysed the protein extract using 1D and 2D gels with LC-MS/MS sequencing. Protein annotation was underpinned by a venom gland transcriptome. The composition of our N. kuhlii venom sample revealed a variety of protein types that are completely novel to animal venom systems. Notably, none of the detected proteins exhibited similarity to the few toxin components previously characterised from fish venoms, including those found in other stingrays. Putative venom toxins identified here included cystatin, peroxiredoxin and galectin. Our study represents the first combined survey of gene and protein composition from the venom apparatus of any fish and our novel protein handling method will aid the future characterisation of toxins from other unstudied venomous fish lineages. BIOLOGICAL SIGNIFICANCE These results show an efficient manner for removing mucus from fish venoms. These results are the first insights into the evolution of proteins present on stingrayvenom barbs.
Collapse
Affiliation(s)
- Kate Baumann
- Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia
| | - Nicholas R Casewell
- Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Molecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Syed A Ali
- Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; HRJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Timothy N W Jackson
- Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, University of Queensland, St Lucia, Queensland 4072, Australia
| | - James S Dobson
- Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia
| | - Scott C Cutmore
- Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia
| | - Vincent Lavergne
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bryan G Fry
- Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Sadhasivam G, Muthuvel A, Rajasekaran R, Pachaiyappan A, Thangavel B. Studies on biochemical and biomedical properties of Conus betulinus venom. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60423-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Angling for uniqueness in enzymatic preparation of glycosides. Biomolecules 2013; 3:334-50. [PMID: 24970171 PMCID: PMC4030847 DOI: 10.3390/biom3020334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 05/23/2013] [Accepted: 06/03/2013] [Indexed: 02/06/2023] Open
Abstract
In the early days of biocatalysis, limitations of an enzyme modeled the enzymatic applications; nowadays the enzyme can be engineered to be suitable for the process requirements. This is a general bird's-eye view and as such cannot be specific for articulated situations found in different classes of enzymes or for selected enzymatic processes. As far as the enzymatic preparation of glycosides is concerned, recent scientific literature is awash with examples of uniqueness related to the features of the biocatalyst (yield, substrate specificity, regioselectivity, and resistance to a particular reaction condition). The invention of glycosynthases is just one of the aspects that has thrust forward the research in this field. Protein engineering, metagenomics and reaction engineering have led to the discovery of an expanding number of novel enzymes and to the setting up of new bio-based processes for the preparation of glycosides. In this review, new examples from the last decade are compiled with attention both to cases in which naturally present, as well as genetically inserted, characteristics of the catalysts make them attractive for biocatalysis.
Collapse
|
13
|
A novel hyaluronidase from brown spider (Loxosceles intermedia) venom (Dietrich's Hyaluronidase): from cloning to functional characterization. PLoS Negl Trop Dis 2013; 7:e2206. [PMID: 23658852 PMCID: PMC3642055 DOI: 10.1371/journal.pntd.0002206] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/25/2013] [Indexed: 11/24/2022] Open
Abstract
Loxoscelism is the designation given to clinical symptoms evoked by Loxosceles spider's bites. Clinical manifestations include skin necrosis with gravitational spreading and systemic disturbs. The venom contains several enzymatic toxins. Herein, we describe the cloning, expression, refolding and biological evaluation of a novel brown spider protein characterized as a hyaluronidase. Employing a venom gland cDNA library, we cloned a hyaluronidase (1200 bp cDNA) that encodes for a signal peptide and a mature protein. Amino acid alignment revealed a structural relationship with members of hyaluronidase family, such as scorpion and snake species. Recombinant hyaluronidase was expressed as N-terminal His-tag fusion protein (∼45 kDa) in inclusion bodies and activity was achieved using refolding. Immunoblot analysis showed that antibodies that recognize the recombinant protein cross-reacted with hyaluronidase from whole venom as well as an anti-venom serum reacted with recombinant protein. Recombinant hyaluronidase was able to degrade purified hyaluronic acid (HA) and chondroitin sulfate (CS), while dermatan sulfate (DS) and heparan sulfate (HS) were not affected. Zymograph experiments resulted in ∼45 kDa lytic zones in hyaluronic acid (HA) and chondroitin sulfate (CS) substrates. Through in vivo experiments of dermonecrosis using rabbit skin, the recombinant hyaluronidase was shown to increase the dermonecrotic effect produced by recombinant dermonecrotic toxin from L. intermedia venom (LiRecDT1). These data support the hypothesis that hyaluronidase is a “spreading factor”. Recombinant hyaluronidase provides a useful tool for biotechnological ends. We propose the name Dietrich's Hyaluronidase for this enzyme, in honor of Professor Carl Peter von Dietrich, who dedicated his life to studying proteoglycans and glycosaminoglycans. Accidents involving brown spiders (Loxosceles genus) are reported throughout the world. South and Southeast of Brazil are endemic areas for this spider. Loxosceles bites commonly trigger local signs as swelling, erythema, hemorrhage and the hallmark symptom: a dermonecrotic lesion with gravitational spreading. Systemic effects are less common; however, are implicated in more severe cases. Hyaluronidases are referred in several venoms as “spreading factors” due to their enzymatic activity upon extracellular components. This activity facilitates the permeation of other toxins through the victim's body. In fact, a previous study identified the activity of L. intermedia venom upon glycosaminoglycans which are abundant components in the extracellular matrix of many tissues. Disclosing a little more about the role of hyaluronidases within this venom, we investigated the activities of a recombinant hyaluronidase from L. intermedia venom. Dietrich's hyaluronidase, as it was designated, was produced as a recombinant protein. By performing a rabbit skin dermonecrosis assay using Dietrich's Hyaluronidase and a dermonecrotic toxin, we showed that Dietrich's Hyaluronidase increased the dermonecrotic area induced by the dermonecrotic toxin. Our results confirm that hyaluronidases are a “spreading factor” of L. intermedia venom.
Collapse
|
14
|
Lenormand H, Amar-Bacoup F, Vincent JC. Reaction–complexation coupling between an enzyme and its polyelectrolytic substrate: Determination of the dissociation constant of the hyaluronidase–hyaluronan complex from the hyaluronidase substrate-dependence. Biophys Chem 2013; 175-176:63-70. [DOI: 10.1016/j.bpc.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
15
|
Clement H, Olvera A, Rodríguez M, Zamudio F, Palomares LA, Possani LD, Odell GV, Alagón A, Sánchez-López R. Identification, cDNA cloning and heterologous expression of a hyaluronidase from the tarantula Brachypelma vagans venom. Toxicon 2012; 60:1223-7. [PMID: 22982117 DOI: 10.1016/j.toxicon.2012.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 12/22/2022]
Abstract
Hyaluronidases (Hyal) present in the venom of poisonous animals have been considered as "spreading factors" that facilitate a fast penetration of the venom in the prey. We have found that hyaluronidase from the tarantula Brachypelma vagans venom (BvHyal) displays a substrate-specific Hyal activity against hyaluronan. By using a combined strategy based on peptide sequencing and RT-PCR, we have cloned a BvHyal cDNA. Active recombinant BvHyal was efficiently expressed in a baculovirus system in insect cell.
Collapse
Affiliation(s)
- Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. 62250, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Recruitment of glycosyl hydrolase proteins in a cone snail venomous arsenal: further insights into biomolecular features of Conus venoms. Mar Drugs 2012; 10:258-280. [PMID: 22412800 PMCID: PMC3296996 DOI: 10.3390/md10020258] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 01/06/2023] Open
Abstract
Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal), from the dissected and injectable venoms (“injectable venom” stands for the venom variety obtained by milking of the snails. This is in contrast to the “dissected venom”, which was obtained from dissected snails by extraction of the venom glands) of a fish-hunting cone snail, Conus consors (Pionoconus clade). The major Hyal isoform, Conohyal-Cn1, is expressed as a mixture of numerous glycosylated proteins in the 50 kDa molecular mass range, as observed in 2D gel and mass spectrometry analyses. Further proteomic analysis and venom duct mRNA sequencing allowed full sequence determination. Additionally, unambiguous segment location of at least three glycosylation sites could be determined, with glycans corresponding to multiple hexose (Hex) and N-acetylhexosamine (HexNAc) moieties. With respect to other known Hyals, Conohyal-Cn1 clearly belongs to the hydrolase-type of Hyals, with strictly conserved consensus catalytic donor and positioning residues. Potent biological activity of the native Conohyals could be confirmed in degrading hyaluronic acid. A similar Hyal sequence was also found in the venom duct transcriptome of C. adamsonii (Textilia clade), implying a possible widespread recruitment of this enzyme family in fish-hunting cone snail venoms. These results provide the first detailed Hyal sequence characterized from a cone snail venom, and to a larger extent in the Mollusca phylum, thus extending our knowledge on this protein family and its evolutionary selection in marine snail venoms.
Collapse
|