1
|
Inahashi K, Yonezawa R, Hayashi K, Watanabe S, Yoshitake K, Smith AR, Kaneko Y, Watanabe I, Suo R, Kinoshita S, Rafiuddin MA, Seki Y, Nagami A, Matsubara H, Suzuki N, Takatani T, Arakawa O, Suzuki M, Asakawa S, Itoi S. Epidermal distribution of tetrodotoxin-rich cells in newly hatched larvae of Takifugu spp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1367-1374. [PMID: 39356382 PMCID: PMC11541287 DOI: 10.1007/s10126-024-10377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Pufferfish of the genus Takifugu possess tetrodotoxin (TTX), known as "pufferfish toxin" and it is believed that pufferfish eggs and newly hatched larvae utilize TTX as a defensive substance against predators. However, the mechanism for the placement of TTX to specific cells on the larval body surface during the developmental process remains unknown. In this study, we clarify the distribution and characteristics of TTX-rich cells. We performed whole-mount immunohistochemistry (IHC) using anti-TTX monoclonal antibody on larvae of two pufferfish species, Takifugu rubripes and Takifugu alboplumbeus, just after hatching. This allowed observation of the TTX location and compared it with those of wheat germ agglutinin (WGA)-positive (periodic acid-Schiff (PAS)-positive) cells for mucous cells and IHC using anti-Na+/K+-ATPase (NKA) monoclonal antibody for ionocytes. As a result, uniformly scattered localization of TTX-rich cells was commonly observed in the epidermis of the larvae of the two Takifugu species. TTX-rich cells were WGA-negative (PAS-negative) and structurally distinct from NKA-positive cells, suggesting that TTX-rich cells are unreported small cells unique to pufferfish skin, but not mucous cells nor ionocytes.
Collapse
Affiliation(s)
- Keishiro Inahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Ryo Yonezawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Kentaro Hayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Soichi Watanabe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ashley Rinka Smith
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yui Kaneko
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Inori Watanabe
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Muhammad Ahya Rafiuddin
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Yuki Seki
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Arata Nagami
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-Cho, Ishikawa, 927-0552, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Tomohiro Takatani
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Miwa Suzuki
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| | - Shiro Itoi
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
2
|
Zhang X, Qiao K, Cui R, Xu M, Cai S, Huang Q, Liu Z. Tetrodotoxin: The State-of-the-Art Progress in Characterization, Detection, Biosynthesis, and Transport Enrichment. Mar Drugs 2024; 22:531. [PMID: 39728106 DOI: 10.3390/md22120531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a neurotoxin that binds to sodium channels and blocks sodium conduction. Importantly, TTX has been increasingly detected in edible aquatic organisms. Because of this and the lack of specific antidotes, TTX poisoning is now a major threat to public health. However, it is of note that ultra-low dose TTX is an excellent analgesic with great medicinal value. These contradictory effects highlight the need for further research to elucidate the impacts and functional mechanisms of TTX. This review summarizes the latest research progress in relation to TTX sources, analogs, mechanisms of action, detection methods, poisoning symptoms, therapeutic options, biosynthesis pathways, and mechanisms of transport and accumulation in pufferfish. This review also provides a theoretical basis for reducing the poisoning risks associated with TTX and for establishing an effective system for its use and management to ensure the safety of fisheries and human health.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Ruimin Cui
- College of Food Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Shuilin Cai
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| |
Collapse
|
3
|
Reverté J, Rambla-Alegre M, Sanchez-Henao A, Mandalakis M, Peristeraki P, Molgó J, Diogène J, Sureda FX, Campàs M. Toxicity Equivalency Factors for Tetrodotoxin Analogues Determined with Automated Patch Clamp on Voltage-Gated Sodium Channels in Neuro-2a Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18192-18200. [PMID: 39102522 DOI: 10.1021/acs.jafc.4c04321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin, responsible for numerous poisoning incidents and some human fatalities. To date, more than 30 TTX analogues have been identified, but their individual toxicities and roles in poisoning remain largely unknown. In this work, the toxicity equivalency factors (TEFs) of five TTX analogues were determined by assessing the blockade of voltage-gated sodium channels in Neuro-2a cells using automated patch clamp (APC). All TTX analogues were less toxic than TTX. The derived TEFs were applied to the individual TTX analogues concentrations measured in pufferfish samples, using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). A comparison of these results with those obtained from APC analysis demonstrated that TEFs can be effectively used to translate LC-MS/MS analytical data into meaningful toxicological information. This is the first study to utilize APC device for the toxicological assessment of TTX analogues, highlighting its potential as a bioanalytical tool for seafood safety management and human health protection.
Collapse
Affiliation(s)
- Jaume Reverté
- IRTA, Ctra, Poble Nou km 5.5, 43540 La Ràpita, Spain
- Basic Medical Sciences Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), C/St. Llorenç 21, 43201 Reus, Spain
| | | | - Andres Sanchez-Henao
- IRTA, Ctra, Poble Nou km 5.5, 43540 La Ràpita, Spain
- University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), 71003 Heraklion, Greece
| | - Panagiota Peristeraki
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71003 Heraklion, Greece
| | - Jordi Molgó
- French Alternative Energies and Atomic Energy Commission (CEA), University of Paris-Saclay, INRAE, DMTS, SIMoS, EMR CNRS 9004, 91191 Gif sur Yvette, France
| | - Jorge Diogène
- IRTA, Ctra, Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Francesc X Sureda
- Basic Medical Sciences Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), C/St. Llorenç 21, 43201 Reus, Spain
| | - Mònica Campàs
- IRTA, Ctra, Poble Nou km 5.5, 43540 La Ràpita, Spain
| |
Collapse
|
4
|
Yonezawa R, Hayashi K, Oyama H, Yoshitake K, Sato S, Senevirathna JDM, Smith AR, Okabe T, Suo R, Kinoshita S, Takatani T, Arakawa O, Asakawa S, Itoi S. Tissue Localization of Tetrodotoxin in the Flatworm Planocera multitentaculata (Platyhelminthes: Polycladida). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:649-657. [PMID: 38861110 DOI: 10.1007/s10126-024-10332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Tetrodotoxin (TTX), a pufferfish toxin, is a highly potent neurotoxin that has been found in a wide variety of animals. The TTX-bearing flatworm Planocera multitentaculata possesses a large amount of TTX and is considered responsible for the toxification of TTX-bearing animals such as pufferfish (Takifugu and Chelonodon) and the toxic goby Yongeichthys criniger. However, the mechanism underlying TTX accumulation in flatworms remains unclear. Previous studies have been limited to identifying the distribution of TTX in multiple organs, such as the digestive organs, genital parts, and the remaining tissues of flatworms. Here, we performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and immunohistochemical staining using a monoclonal anti-TTX antibody to elucidate the detailed localization of TTX in the tissues and organs of the flatworm P. multitentaculata. Immunohistochemical staining for P. multitentaculata showed that TTX-specific signals were detected not only in the ovaries and pharynx but also in many other tissues and organs, whereas no signal was detected in the brain, Lang's vesicle, and genitalia. In addition, combined with LC-MS/MS analysis, it was revealed for the first time that TTX accumulates in high concentrations in the basement membrane and epidermis. These findings robustly support the hypotheses of "TTX utilization protection from predators."
Collapse
Affiliation(s)
- Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Hayashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hikaru Oyama
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soshi Sato
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jayan Duminda M Senevirathna
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - Ashley R Smith
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki Okabe
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
- Niigata Prefectural Kaiyo High School, Itoigawa, Niigata, 949-1352, Japan
| | - Rei Suo
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Takatani
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Shiro Itoi
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan.
| |
Collapse
|
5
|
Malykin GV, Velansky PV, Melnikova DI, Magarlamov TY. Tetrodotoxins in Larval Development of Ribbon Worm Cephalothrix cf. simula (Palaeonemertea, Nemertea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:918-934. [PMID: 37672165 DOI: 10.1007/s10126-023-10249-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
The toxic ribbon worm, Cephalothrix cf. simula (Palaeonemertea, Nemertea), possesses extremely high concentrations of tetrodotoxin (TTX). Although TTX has been found in the eggs of this species, the fate of the toxin in the ontogeny of the animal has not been explored. Here, using high performance liquid chromatography with tandem mass spectrometry and immunohistochemistry with anti-TTX antibodies, we examined levels, profile, and localization of TTX and its analogues (TTXs) in larvae of C. cf. simula throughout 41 days post-fertilization. A detailed investigation of cells in sites of TTX-accumulation was performed with light and electron microscopy. Newly hatched larvae possessed weak TTX-like immunoreactivity in all cells. With subsequent development, intensity of TTX-labeling in the ectodermal structures, mesodermal cells and apical cylinder of the apical gland increased. In the ectodermal structures, an intense TTX-labeling was observed in the multiciliated, type II granular, type I mucoid, and basal cells of the epidermis, and in the type III granular cells of the mouth gland. In the mesoderm, TTX was localized in the muscle and unigranular parenchyma-like cells. Eggs and larvae of C. cf. simula contained five TTXs, with two major toxins - TTX and 5,6,11-trideoxyTTX. Level and relative proportion of TTXs did not differ significantly among developmental stages, confirming that larvae obtained toxins from maternal eggs and were able to retain it. The results of this study provide insights into the formation of TTX-bearing apparatus of C. cf. simula through the larval development.
Collapse
Affiliation(s)
- Grigorii V Malykin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
| | - Peter V Velansky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
| | - Daria I Melnikova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
| | - Timur Yu Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation.
| |
Collapse
|
6
|
Anastasiou TI, Kagiampaki E, Kondylatos G, Tselepides A, Peristeraki P, Mandalakis M. Assessing the Toxicity of Lagocephalus sceleratus Pufferfish from the Southeastern Aegean Sea and the Relationship of Tetrodotoxin with Gonadal Hormones. Mar Drugs 2023; 21:520. [PMID: 37888455 PMCID: PMC10608560 DOI: 10.3390/md21100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Given the dramatic increase in the L. sceleratus population in the southeastern Aegean Sea, there is growing interest in assessing the toxicity of this pufferfish and the factors controlling its tetrodotoxin (TTX) content. In the present study, liver, gonads, muscle and skin of 37 L. sceleratus specimens collected during May and June 2021 from the island of Rhodes, Greece, were subjected to multi-analyte profiling using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to quantitate TTX and evaluate whether this biotoxin interrelates with hormones. TTX and its analogues 4-epiTTX, 11-deoxyTTX, 11-norTTX-6-ol, 4,9-anhydroTTX and 5,11/6,11-dideoxyTTX were detected in all tissue types. Liver and gonads were the most toxic tissues, with the highest TTX concentrations being observed in the ovaries of female specimens. Only 22% of the analyzed muscle samples were non-toxic according to the Japanese toxicity threshold (2.2 μg TTX eq g-1), confirming the high poisoning risk from the inadvertent consumption of this species. Four steroid hormones (i.e., cortisol, testosterone, androstenedione and β-estradiol) and the gonadotropin-releasing hormone (GnRH) were detected in the gonads. Androstenedione dominated in female specimens, while GnRH was more abundant in males. A positive correlation of TTX and its analogues with β-estradiol was observed. However, a model incorporating sex rather than β-estradiol as the independent variable proven to be more efficient in predicting TTX concentration, implying that other sex-related characteristics are more important than specific hormone-regulated processes.
Collapse
Affiliation(s)
- Thekla I Anastasiou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece
- Department of Biology, University of Crete, 70013 Heraklion, Greece
| | - Eirini Kagiampaki
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece
| | - Gerasimos Kondylatos
- Hellenic Centre for Marine Research (HCMR), Hydrobiological Station of Rhodes, 85131 Rhodes, Greece
| | | | - Panagiota Peristeraki
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biological Resources and Inland Waters, 71500 Heraklion, Greece
| | - Manolis Mandalakis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece
| |
Collapse
|
7
|
Melnikova DI, Magarlamov TY. An Overview of the Anatomical Distribution of Tetrodotoxin in Animals. Toxins (Basel) 2022; 14:toxins14080576. [PMID: 36006238 PMCID: PMC9412668 DOI: 10.3390/toxins14080576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrodotoxin (TTX), a potent paralytic sodium channel blocker, is an intriguing marine toxin. Widely distributed in nature, TTX has attracted attention in various scientific fields, from biomedical studies to environmental safety concerns. Despite a long history of studies, many issues concerning the biosynthesis, origin, and spread of TTX in animals and ecosystems remain. This review aims to summarize the current knowledge on TTX circulation inside TTX-bearing animal bodies. We focus on the advances in TTX detection at the cellular and subcellular levels, providing an expanded picture of intra-organismal TTX migration mechanisms. We believe that this review will help address the gaps in the understanding of the biological function of TTX and facilitate the development of further studies involving TTX-bearing animals.
Collapse
|
8
|
He X, Wu H, Ye Y, Gong X, Bao B. Transcriptome analysis revealed gene expression feminization of testis after exogenous tetrodotoxin administration in pufferfish Takifugu flavidus. BMC Genomics 2022; 23:553. [PMID: 35922761 PMCID: PMC9347094 DOI: 10.1186/s12864-022-08787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hexing Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolin Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
9
|
Dean KJ, Alexander RP, Hatfield RG, Lewis AM, Coates LN, Collin T, Teixeira Alves M, Lee V, Daumich C, Hicks R, White P, Thomas KM, Ellis JR, Turner AD. The Common Sunstar Crossaster papposus-A Neurotoxic Starfish. Mar Drugs 2021; 19:695. [PMID: 34940694 PMCID: PMC8704474 DOI: 10.3390/md19120695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Saxitoxins (STXs) are a family of potent neurotoxins produced naturally by certain species of phytoplankton and cyanobacteria which are extremely toxic to mammalian nervous systems. The accumulation of STXs in bivalve molluscs can significantly impact animal and human health. Recent work conducted in the North Sea highlighted the widespread presence of various saxitoxins in a range of benthic organisms, with the common sunstar (Crossaster papposus) demonstrating high concentrations of saxitoxins. In this study, an extensive sampling program was undertaken across multiple seas surrounding the UK, with 146 starfish and 5 brittlestars of multiple species analysed for STXs. All the common sunstars analysed (n > 70) contained quantifiable levels of STXs, with the total concentrations ranging from 99 to 11,245 µg STX eq/kg. The common sunstars were statistically different in terms of toxin loading to all the other starfish species tested. Two distinct toxic profiles were observed in sunstars, a decarbomylsaxitoxin (dcSTX)-dominant profile which encompassed samples from most of the UK coast and an STX and gonyautoxin2 (GTX2) profile from the North Yorkshire coast of England. Compartmentalisation studies demonstrated that the female gonads exhibited the highest toxin concentrations of all the individual organs tested, with concentrations >40,000 µg STX eq/kg in one sample. All the sunstars, male or female, exhibited the presence of STXs in the skin, digestive glands and gonads. This study highlights that the common sunstar ubiquitously contains STXs, independent of the geographical location around the UK and often at concentrations many times higher than the current regulatory limits for STXs in molluscs; therefore, the common sunstar should be considered toxic hereafter.
Collapse
Affiliation(s)
- Karl J. Dean
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Ryan P. Alexander
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Robert G. Hatfield
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Adam M. Lewis
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Lewis N. Coates
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Tom Collin
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Mickael Teixeira Alves
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Vanessa Lee
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Caroline Daumich
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Ruth Hicks
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Peter White
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Krista M. Thomas
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3Z 3H1, Canada;
| | - Jim R. Ellis
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft NR33 0HT, UK;
| | - Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| |
Collapse
|
10
|
De Novo Accumulation of Tetrodotoxin and Its Analogs in Pufferfish and Newt and Dosage-Driven Accumulation of Toxins in Newt: Tissue Distribution and Anatomical Localization. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9091004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study was undertaken to determine the amounts of tetrodotoxin (TTX) and its analogs (TTXs) in various tissues of toxin-bearing pufferfish (Canthigaster revulata and Takifugu flavipterus) and newt (Cynops pyrrhogaster) using specific polyclonal antibodies against TTXs, and to compare the obtained results with those mainly determined by high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The anatomical localization of TTXs in these animals was also demonstrated immunohistochemically using the above-mentioned antibody. The ratio of the total amount of TTXs determined by ELISA to that determined by HPLC-FLD changed depending on the tissues examined in pufferfish. Such differences were also observed with the newt in tissue- and individual-dependent manners. Furthermore, TTXs, as well as decarbamoylsaxitoxin (dcSTX), an analog of saxitoxin (STX), were traced for their dynamic changes in tissue distribution, when the newt was fed authentic toxins or toxic animal tissues exogenously, demonstrating that a TTX analog, 5,6,11-trideoxyTTX, and dcSTX were not metabolized into TTX or STX. TTXs-immunoreactive (ir) staining was observed in the pancreas region of the hepatopancreas, the oocytes at the perinucleolus stage, the sac-like tissues just outside the serous membrane of the intestine, and the gland-like structure of the skin, but not in the muscles of pufferfish. TTXs-ir staining was also detected in the mature glands in the dermis of the adult and regenerated tail, but not in the liver, intestine, testis and ovary of the adult newt. TTXs-ir staining was detected in the epithelial cells of the intestine, the ovary, the mucous cells, and the dermis of the TTXs-administered newt. These results suggest that TTXs absorbed from the environment are distributed to various organs or tissues in a species-specific manner, regardless of whether or not these are metabolized in the bodies of toxin-bearing animals.
Collapse
|
11
|
Vlasenko AE, Kuznetsov VG, Malykin GV, Pereverzeva AO, Velansky PV, Yakovlev KV, Magarlamov TY. Tetrodotoxins Secretion and Voltage-Gated Sodium Channel Adaptation in the Ribbon Worm Kulikovia alborostrata (Takakura, 1898) (Nemertea). Toxins (Basel) 2021; 13:toxins13090606. [PMID: 34564610 PMCID: PMC8472881 DOI: 10.3390/toxins13090606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 01/21/2023] Open
Abstract
Nemertea is a phylum of marine worms whose members bear various toxins, including tetrodotoxin (TTX) and its analogues. Despite the more than 30 years of studying TTXs in nemerteans, many questions regarding their functions and the mechanisms ensuring their accumulation and usage remain unclear. In the nemertean Kulikovia alborostrata, we studied TTX and 5,6,11-trideoxyTTX concentrations in body extracts and in released mucus, as well as various aspects of the TTX-positive-cell excretion system and voltage-gated sodium (Nav1) channel subtype 1 mutations contributing to the toxins' accumulation. For TTX detection, an immunohistological study with an anti-TTX antibody and HPLC-MS/MS were conducted. For Nav1 mutation searching, PCR amplification with specific primers, followed by Sanger sequencing, was used. The investigation revealed that, in response to an external stimulus, subepidermal TTX-positive cells released secretions actively to the body surface. The post-release toxin recovery in these cells was low for TTX and high for 5,6,11-trideoxyTTX in captivity. According to the data obtained, there is low probability of the targeted usage of TTX as a repellent, and targeted 5,6,11-trideoxyTTX secretion by TTX-bearing nemerteans was suggested as a possibility. The Sanger sequencing revealed identical sequences of the P-loop regions of Nav1 domains I-IV in all 17 studied individuals. Mutations comprising amino acid substitutions, probably contributing to nemertean channel resistance to TTX, were shown.
Collapse
|
12
|
Molecular Characterization of the Von Willebrand Factor Type D Domain of Vitellogenin from Takifugu flavidus. Mar Drugs 2021; 19:md19040181. [PMID: 33806251 PMCID: PMC8065724 DOI: 10.3390/md19040181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
The von Willebrand factor type D (VWD) domain in vitellogenin has recently been found to bind tetrodotoxin. The way in which this protein domain associates with tetrodotoxin and participates in transporting tetrodotoxin in vivo remains unclear. A cDNA fragment of the vitellogenin gene containing the VWD domain from pufferfish (Takifugu flavidus) (TfVWD) was cloned. Using in silico structural and docking analyses of the predicted protein, we determined that key amino acids (namely, Val115, ASP116, Val117, and Lys122) in TfVWD mediate its binding to tetrodotoxin, which was supported by in vitro surface plasmon resonance analysis. Moreover, incubating recombinant rTfVWD together with tetrodotoxin attenuated its toxicity in vivo, further supporting protein–toxin binding and indicating associated toxicity-neutralizing effects. Finally, the expression profiling of TfVWD across different tissues and developmental stages indicated that its distribution patterns mirrored those of tetrodotoxin, suggesting that TfVWD may be involved in tetrodotoxin transport in pufferfish. For the first time, this study reveals the amino acids that mediate the binding of TfVWD to tetrodotoxin and provides a basis for further exploration of the molecular mechanisms underlying the enrichment and transfer of tetrodotoxin in pufferfish.
Collapse
|
13
|
Puffer Fish Gut Microbiota Studies Revealed Unique Bacterial Co-Occurrence Patterns and New Insights on Tetrodotoxin Producers. Mar Drugs 2020; 18:md18050278. [PMID: 32466241 PMCID: PMC7281374 DOI: 10.3390/md18050278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin isolated mainly from toxic puffer fish. To date, the TTX biosynthetic mechanism inside its hosts remains unresolved. Here, we hypothesize the TTX synthesis relies on the host gut microbiota, including the neglected non-culturable bacteria. In these studies, we collected the gut contents from 5 puffer fish species of the genus Takifugu including one suspected hybrid species for gut microbiota study by 16S rRNA amplicon metagenomics approach. Their gut samples were divided into toxic and non-toxic groups based on the TTX concentrations in the livers detected by LC-MS/MS. Bacterial diversity studies showed that gut microbiota structures were significantly different between toxic and non-toxic species. Vibrio and Cyanobacteria centered at the gut bacterial co-occurrence network, suggesting their importance in TTX biosynthesis. The results of PICRUSt2 metagenomic prediction and gene set enrichment analysis provided new support of arginine-precursor required in TTX biosynthesis. This is the first study to profile the gut microbiota in toxic and non-toxic puffer fish species by 16S rRNA amplicon metagenomic approach, defining significant microbial co-occurrence patterns in their gut environment. Our data supported the proposed biosynthesis of TTX inside the hosts by their gut bacterial symbionts using arginine as a precursor.
Collapse
|
14
|
Evaluation of the tetrodotoxin uptake ability of pufferfish Takifugu rubripes tissues according to age using an in vitro tissue slice incubation method. Toxicon 2020; 174:8-12. [PMID: 31785287 DOI: 10.1016/j.toxicon.2019.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022]
Abstract
The tetrodotoxin (TTX) uptake ability of pufferfish Takifugu rubripes tissues and its growth-associated changes were investigated using an in vitro tissue slice incubation method. Tissue slices prepared from the liver, skin, and intestine of a non-toxic cultured adult T. rubripes (20 months old) and incubated with incubation buffer containing 25 μg/mL TTX for 1-48 h showed a time-dependent increase in the TTX content in all tissues. The TTX contents of the skin and intestine slices were comparable to or slightly higher than that of the liver slices, with a similar transition pattern, suggesting similar TTX uptake ability among the skin, intestine, and liver. The TTX uptake ability of the liver and intestine did not differ significantly between young (8 months old) and adult (20 months old) fish, but the skin slices of young fish took up approximately twice as much TTX as that of adult fish, suggesting that the TTX uptake ability of the skin is involved in the growth-dependent changes in the toxin distribution inside the body in T. rubripes. To estimate the TTX uptake pathway in each tissue, an immunohistochemical technique was used to observe temporal changes in the intra-tissue microdistribution of TTX during incubation. The findings suggested that TTX is transferred and accumulates from pancreatic exocrine cells to hepatic parenchymal cells in the liver, from connective tissues to basal cells in the skin, and from villi epithelial cells via the lamina propria to the muscle layer in the intestine.
Collapse
|
15
|
Tsutsui S, Suzuki Y, Shibuya K, Nakamura O. Sacciform cells in the epidermis of fugu (Takifugu rubripes) produce and secrete kalliklectin, a novel lectin found in teleosts. FISH & SHELLFISH IMMUNOLOGY 2018; 80:311-318. [PMID: 29902562 DOI: 10.1016/j.fsi.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Kalliklectin is a novel lectin identified in the skin mucus and blood plasma of teleosts, including fugu (Takifugu rubripes). It has been found to exhibit sequence similarity to mammalian plasma kallikrein and coagulation factor XI. The objective of the present study was to clarify the cellular localization of kalliklectin using an antiserum specific to fugu kalliklectin. Immunohistochemical analysis showed that positive reactions were observed in the skin and liver, but not in other tested tissues. Several types of epidermal cells were stained by the antiserum; sacciform cells were one of the types of cells most densely stained by the antiserum in adult fugu skin, whereas mucous cells showed negative staining results. RT-PCR demonstrated that the kalliklectin gene was transcribed in the mucous cell-poor region of adult fugu skin, where sacciform cells were present. These results indicated that epidermal cells, including sacciform cells, produce kalliklectin and secrete it into the mucus.
Collapse
Affiliation(s)
- Shigeyuki Tsutsui
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Yuya Suzuki
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ko Shibuya
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
16
|
Role of maternal tetrodotoxin in survival of larval pufferfish. Toxicon 2018; 148:95-100. [DOI: 10.1016/j.toxicon.2018.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/03/2018] [Accepted: 04/14/2018] [Indexed: 11/20/2022]
|
17
|
Yin X, Kiriake A, Ohta A, Kitani Y, Ishizaki S, Nagashima Y. A novel function of vitellogenin subdomain, vWF type D, as a toxin-binding protein in the pufferfish Takifugu pardalis ovary. Toxicon 2017; 136:56-66. [PMID: 28651990 DOI: 10.1016/j.toxicon.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/25/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
Abstract
Marine pufferfish of the Tetraodontidae family contain high levels of tetrodotoxin (TTX) in the liver and ovary. TTX is suggested to transfer from the liver to the ovary in female pufferfish during maturation. TTX in pufferfish eggs may act as a repellent against predators and as a sexual pheromone to attract male pufferfish. The toxification mechanism of the pufferfish ovary is poorly understood. Here we evaluated the chemical form of TTX and its related substances in the ovary of the panther pufferfish Takifugu pardalis by LC-ESI/MS. TTX and its analogs 4-epi-TTX, 4, 9-anhydroTTX, deoxyTTX, dideoxyTTX, and trideoxyTTX were detected in a low molecular weight fraction by Sephacryl S-400 column chromatography. The finding of an unknown TTX-related substance in a high molecular weight fraction from the Sephacryl S-400 column suggested the occurrence of toxin-binding protein in the ovary. The toxin-binding protein in the ovary was purified by ion-exchange HPLC, gel filtration HPLC, and SDS-PAGE. Amino acid sequencing and cDNA cloning revealed that the toxin-binding protein, TPOBP-10 (Takifugu pardalis ovary toxin-binding protein with a molecular mass of 10 kDa) was homologous with the predicted vitellogenin-1-like protein [Takifugu rubripes] subdomain, a von Willebrand factor type D domain. TPOBP-10 mRNA was highly expressed in the ovary and liver and less in other organs of female individuals based on RT-PCR. These findings reveal a novel function of the vitellogenin subdomain as binding with TTX-related substances, and its involvement in the toxification of the pufferfish ovary.
Collapse
Affiliation(s)
- Xianzhe Yin
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Aya Kiriake
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Akira Ohta
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Yoichiro Kitani
- Faculty of Biosciences and Aquaculture, NORD University, Bodø 8049, Norway
| | - Shoichiro Ishizaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Yuji Nagashima
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
18
|
Tatsuno R, Gao W, Ibi K, Mine T, Okita K, Nishihara GN, Takatani T, Arakawa O. Profile differences in tetrodotoxin transfer to skin and liver in the pufferfish Takifugu rubripes. Toxicon 2017; 130:73-78. [DOI: 10.1016/j.toxicon.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
19
|
Itoi S, Ishizuka K, Mitsuoka R, Takimoto N, Yokoyama N, Detake A, Takayanagi C, Yoshikawa S, Sugita H. Seasonal changes in the tetrodotoxin content of the pufferfish Takifugu niphobles. Toxicon 2016; 114:53-8. [PMID: 26923160 DOI: 10.1016/j.toxicon.2016.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
Abstract
To investigate seasonal changes in the whole body content and tissue distribution of tetrodotoxin (TTX) in the pufferfish Takifugu niphobles, wild individuals were collected from the coastal waters around Miura Peninsula from November 2010 to May 2012, and their tissues were subjected to LC-MS/MS analysis. Fish that were sexually mature were classified as being in the maturation period (April), the spawning period (May-July) or the "ordinary period" (i.e., other months). In both sexes, gonad somatic index rapidly increased during the maturation period and then decreased during the spawning period. Whole body TTX content was significantly higher during the maturation/spawning period than in the ordinary period. Through all seasons, TTX was localized in the skin or ovary in females and in the skin or liver in males: the difference in TTX localization between females and males was particularly evident during the spawning period.
Collapse
Affiliation(s)
- Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Kento Ishizuka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Ryoko Mitsuoka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Narumi Takimoto
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Naoto Yokoyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Ayumi Detake
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Chie Takayanagi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Saori Yoshikawa
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
20
|
Itoi S, Kozaki A, Komori K, Tsunashima T, Noguchi S, Kawane M, Sugita H. Toxic Takifugu pardalis eggs found in Takifugu niphobles gut: Implications for TTX accumulation in the pufferfish. Toxicon 2015; 108:141-6. [PMID: 26485535 DOI: 10.1016/j.toxicon.2015.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 11/30/2022]
Abstract
Pufferfish (Takifugu spp.) possess a potent neurotoxin, tetrodotoxin (TTX). TTX has been detected in various organisms including food animals of pufferfish, and TTX-producing bacteria have been isolated from these animals. TTX in marine pufferfish accumulates in the pufferfish via the food web starting with marine bacteria. However, such accumulation is unlikely to account for the amount of TTX in the pufferfish body because of the minute amounts of TTX produced by marine bacteria. Therefore, the toxification process in pufferfish still remains unclear. In this article we report the presence of numerous Takifugu pardalis eggs in the intestinal contents of another pufferfish, Takifugu niphobles. The identity of T. pardalis being determined by direct sequencing for mitochondrial DNA. LC-MS/MS analysis revealed that the peak detected in the egg samples corresponded to TTX. Toxification experiments in recirculating aquaria demonstrated that cultured Takifugu rubripes quickly became toxic upon being fed toxic (TTX-containing) T. rubripes eggs. These results suggest that T. niphobles ingested the toxic eggs of another pufferfish T. pardalis to toxify themselves more efficiently via a TTX loop consisting of TTX-bearing organisms at a higher trophic level in the food web.
Collapse
Affiliation(s)
- Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Ao Kozaki
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Keitaro Komori
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadasuke Tsunashima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shunsuke Noguchi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Mitsuo Kawane
- Department of Sea-Farming, Aichi Fish Farming Institute, Tahara, Aichi 441-3618, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
21
|
Xu XM, Yu XW, Lu M, Huang BF, Ren YP. Study of the matrix effects of tetrodotoxin and its content in cooked seafood by liquid chromatography with triple quadrupole mass spectrometry. J Sep Sci 2015; 38:3374-82. [DOI: 10.1002/jssc.201500617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/12/2015] [Accepted: 07/21/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Xiao-min Xu
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou China
| | - Xin-wei Yu
- Zhoushan Municipal Center for Disease Control and Prevention; Zhoushan China
| | - Meiling Lu
- Agilent Technologies (China) Co; Ltd; Beijing China
| | - Bai-fen Huang
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou China
| | - Yi-ping Ren
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou China
| |
Collapse
|
22
|
Liu J, Wei F, Lu Y, Ma T, Zhao J, Gong X, Bao B. Production level of tetrodotoxin in Aeromonas is associated with the copy number of a plasmid. Toxicon 2015; 101:27-34. [PMID: 25911960 DOI: 10.1016/j.toxicon.2015.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Tetrodotoxin (TTX) has been identified from taxonomically diverse organisms. Artificial synthesis of TTX has been reported, but the biosynthetic pathway of TTX remains elusive. In this study, we found TTX producing ability was associated with the copy number of plasmid pNe-1 in Aeromonas strain Ne-1 during fermentation, suggesting that at least one gene encoding a TTX-synthesis enzyme is located on this plasmid. Compared with bacterial genomes, plasmids are small and easier to screen for genes associated with TTX biosynthesis. The approximately 100 kb genome of pNe-1 was sequenced. The plasmid contains 60 complete open reading frames (orfs) of which 32 (53.3%) encode hypothetical proteins. Seven genes are related to the type IV secretion system (T4SS) and 2 genes are related to transposons, indicating that the TTX-producing bacterium Aeromonas might have the ability to transfer the TTX biosynthesis gene via the conjugation and contagion of plasmid pNe-1. In addition, we unexpectedly found that Aeromonas Ne-1 contains unknown TTX-degrading materials, indicating there is a homeostatic mechanism to maintain a stable amount of TTX in the bacterium. These results will help us to better understand TTX biosynthesis, the bacterial origin of TTX, and TTX degradation.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Fen Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Ying Lu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tinglong Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Jing Zhao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoling Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
23
|
Salvitti LR, Wood SA, Winsor L, Cary SC. Intracellular immunohistochemical detection of tetrodotoxin in Pleurobranchaea maculata (Gastropoda) and Stylochoplana sp. (Turbellaria). Mar Drugs 2015; 13:756-69. [PMID: 25636158 PMCID: PMC4344600 DOI: 10.3390/md13020756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 12/04/2022] Open
Abstract
Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within these organisms is important to assist in elucidating the origin and ecological role of this toxin. Intracellular micro-distribution of TTX was investigated using a monoclonal antibody-based immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, and in the digestive tissue of P. maculata. The ova and pharynx were the only two structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data suggest that TTX has a defensive function in adult P. maculata, who then invest this in their progeny for protection. Localization in the digestive tissue of P. maculata potentially indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for the protection of offspring.
Collapse
Affiliation(s)
- Lauren R Salvitti
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Susanna A Wood
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Leigh Winsor
- College of Marine and Environmental Sciences, James Cook University, Townsville QLD 4811, Australia.
| | - Stephen Craig Cary
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|
24
|
Itoi S, Yoshikawa S, Asahina K, Suzuki M, Ishizuka K, Takimoto N, Mitsuoka R, Yokoyama N, Detake A, Takayanagi C, Eguchi M, Tatsuno R, Kawane M, Kokubo S, Takanashi S, Miura A, Suitoh K, Takatani T, Arakawa O, Sakakura Y, Sugita H. Larval pufferfish protected by maternal tetrodotoxin. Toxicon 2014; 78:35-40. [DOI: 10.1016/j.toxicon.2013.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022]
|
25
|
Localization of pufferfish saxitoxin and tetrodotoxin binding protein (PSTBP) in the tissues of the pufferfish, Takifugu pardalis, analyzed by immunohistochemical staining. Toxicon 2013; 72:23-8. [PMID: 23769753 DOI: 10.1016/j.toxicon.2013.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/28/2013] [Accepted: 06/04/2013] [Indexed: 11/22/2022]
Abstract
Pufferfish saxitoxin and tetrodotoxin binding protein (PSTBP) was previously isolated from the plasma of the marine pufferfish, Takifugu pardalis. In this study, we investigated distribution pattern of PSTBP in intestine, liver, ovary, skin, and skeletal muscle of T. pardalis by immunohistochemical staining for the study of functions of this protein. In the skin, dermis around the tetrodotoxin secreting gland was positive, while this secreting gland itself was negative. In the ovary containing vitellogenic oocytes, ovarian wall and vitelline envelope were positive, while yolk and nucleus were negative. In the liver, hepatocytes with large fat droplets and capillaries were positive. In the intestine, the lamina propria mucosae were positive, while the mucosal epithelium was negative. In the skeletal muscle, only capillaries were positive. Furthermore, liver specific expression of PSTBP was confirmed by Northern blot analysis. Based on these results together with reported tetrodotoxin localization pattern in pufferfish, PSTBP was assumed to be a carrier protein to transfer tetrodotoxin among the tissues, especially liver, ovary, and skin.
Collapse
|
26
|
Okita K, Takatani T, Nakayasu J, Yamazaki H, Sakiyama K, Ikeda K, Arakawa O, Sakakura Y. Comparison of the localization of tetrodotoxin between wild pufferfish Takifugu rubripes juveniles and hatchery-reared juveniles with tetrodotoxin administration. Toxicon 2013; 71:128-33. [PMID: 23747273 DOI: 10.1016/j.toxicon.2013.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
To reveal the accumulation profile of tetrodotoxin (TTX) in pufferfish Takifugu rubripes juveniles, we compared the localization of TTX in various tissues among wild juveniles and hatchery-reared juveniles with or without TTX administration using immunohistochemical technique with anti-TTX monoclonal antibody. Immuno-positive reaction was observed in hepatic tissue, basal cell of skin and olfactory, olfactory epithelium, optic nerve and brain (optic tectum, cerebellum, medulla oblongata) of wild juveniles (body length: BL, 4.7-9.4 cm). TTX was detected in the same tissues as wild juveniles and epithelial cell layer of intestine of hatchery-reared juveniles (BL, 5.0-5.3 cm) to which TTX was orally administrated. No positive reaction was observed from the tissues of hatchery-reared juveniles without TTX administration. These results suggest that orally administrated TTX to the non-toxic cultured juveniles is accumulated in the same manner of wild juveniles. In addition, our study revealed that pufferfish accumulates TTX in the central nervous system.
Collapse
Affiliation(s)
- Kogen Okita
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|