1
|
Gutiérrez JM, Vargas M, Segura Á, Herrera M, Villalta M, Solano G, Sánchez A, Herrera C, León G. In Vitro Tests for Assessing the Neutralizing Ability of Snake Antivenoms: Toward the 3Rs Principles. Front Immunol 2021; 11:617429. [PMID: 33505403 PMCID: PMC7829219 DOI: 10.3389/fimmu.2020.617429] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
There is an urgent need to strengthen the implementation of the 3Rs principle (Replacement, Reduction and Refinement) in the use of experimental animals in toxinological research and in the assessment of the neutralizing efficacy of snake antivenoms. This is a challenging task owing to the inherent complexity of snake venoms. The state of the art on this topic is hereby reviewed, with emphasis on the studies in which a correlation has been observed between in vivo toxicity tests and in vitro surrogate assays, particularly in the study of lethal activity of venoms and its neutralization. Correlations have been described with some venoms-antivenoms when using: (a) enzyme immunoassays, (b) hemagglutination, (c) enzyme assays (proteinase, phospholipase A2), (d) in vitro coagulant effect on plasma, (e) cell culture assays for cytotoxicity, (f) functional assays for assessing neurotoxicity in vitro, (g) use of hens' eggs, and (h) antivenomics. Additionally, the routine introduction of analgesia in these assays and the design of more 'humane' protocols for the lethality test are being pursued. It is expected that the next years will witness a growing awareness of the relevance of the 3Rs principles in antivenom testing, and that new in vitro alternatives and more 'humane' experimental designs will emerge in this field.
Collapse
Affiliation(s)
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| |
Collapse
|
2
|
Stillman MW, Whittaker AL. Use and Efficacy of Analgesic Agents in Sheep ( Ovis aries) Used in Biomedical Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:755-766. [PMID: 31604483 DOI: 10.30802/aalas-jaalas-19-000036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sheep (Ovis aries) are widely used as large animal models in biomedical research. However, current literature on the use of analgesics in sheep generally focuses on an industry or farm level of use. This structured review evaluates use and efficacy of analgesics administered to sheep in a biomedical research setting. Electronic databases were searched with terms related to analgesia in research sheep. After application of exclusion criteria, 29 peer-reviewed publications were evaluated from 1995 to 2018. Drugs used for analgesia in sheep include opioids, α₂ agonists, NSAID, local anesthetics, NMDA receptor antagonists, and calcium channel blockers. Opioid agonists have previously been considered short acting and of questionable efficacy in sheep, but newer modalities may provide effective analgesia. NSAID may exhibit an analgesic effect only when inflammatory pain is present and may not be beneficial for use in acute pain models. α₂ agonists provide effective yet short-lived analgesia; however, side effects are of concern. Local anesthetics were previously widely used as stand-alone agents, as alternatives to the use of general anesthetics in sheep. These agents have since fallen out of favor as sole agents. Despite this, they provide a valuable analgesic effect when used as adjuncts to general anesthetic regimes. The NMDA antagonist ketamine provided good analgesia and is likely underutilized as an analgesic agent in sheep. Future controlled studies should further evaluate the analgesic properties of ketamine in sheep.
Collapse
Affiliation(s)
- Mark W Stillman
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia;,
| |
Collapse
|
3
|
Herrera C, Bolton F, Arias AS, Harrison RA, Gutiérrez JM. Analgesic effect of morphine and tramadol in standard toxicity assays in mice injected with venom of the snake Bothrops asper. Toxicon 2018; 154:35-41. [PMID: 30268394 DOI: 10.1016/j.toxicon.2018.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023]
Abstract
Routine laboratory animal tests necessary to assess the toxicity of snake venoms and the preclinical neutralizing ability of antivenoms and other inhibitory substances induce significant pain and distress. This has prompted initiatives to introduce the routine use of analgesia. In this study, the analgesic effect of morphine and tramadol was assessed in tests assessing the lethal, hemorrhagic, myotoxic and edema-forming activities of the venom of the viperid snake Bothrops asper. The Mouse Grimace Scale (MGS) and mouse-exploration activity were used to assess pain and its inhibition by the analgesics. Results demonstrate that tests assessing lethality and myotoxicity induce higher levels of pain than assays quantifying hemorrhagic and edema-forming activities. Our observations also indicate that pretreatment of mice with both analgesics, at the doses used, were similarly effective in reducing the MGS magnitude and increase mouse-exploration activity after the administration of B. asper venom. Moreover, the analgesic effect of both drugs was more evident in the myotoxic and lethality assays. Combined with previous observations showing that these analgesics do not alter the extent of toxic effects induced by B. asper venom, our results strongly indicate that the use of analgesia (using either morphine or tramadol) should be considered in the routine assessment of venom toxicity and antivenom efficacy.
Collapse
Affiliation(s)
- Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Fiona Bolton
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ana Silvia Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
4
|
Williams DJ, Habib AG, Warrell DA. Clinical studies of the effectiveness and safety of antivenoms. Toxicon 2018; 150:1-10. [PMID: 29746978 DOI: 10.1016/j.toxicon.2018.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
In the 1890s, hyperimmune sera proved effective in animals against challenge by the snake venom against which they had been raised. They were first used, apparently successfully, in a human patient in about 1895. Since then, antivenoms have become accepted as the only reliable specific treatment for snake-bite envenoming. Despite decades of accumulated clinical experience and a number of published randomized comparative and observational studies, the clinical effectiveness and safety of some antivenoms remain open to question, due to a lack of robust randomized controlled trial data. Antivenoms in some poorly regulated markets may have high rates of potentially fatal adverse effects and their use must be balanced by demonstrable effectiveness. Even those manufactured to strict regulatory requirements may pose a rare risk of severe adverse reactions. Most antivenoms currently marketed around the world were registered without first being studied clinically. There is increasing pressure to subject antivenoms, even those that are long-established, to the same protocols of rigorous pre-clinical and clinical assessment that are standard regulatory requirements for other drugs. Conventional clinical testing progresses through Phases I, II, III to IV. Most authorities consider antivenoms too dangerous to be used in Phase I studies in healthy volunteers. An alternative method for preliminary estimation of safety, dose-finding and effectiveness, is proposed - the "3 + 3" dose escalation or de-escalation design, in volunteer patients, as used in oncology to test cytotoxic drugs. Antivenoms are so widely used and well trusted, that there are few ethical justifications for placebo controls. However, placebo might be ethically justified if there were no proven effective treatment and or if withholding or delaying treatment posed acceptably negligible risks to the participants. Antivenom trials are most urgently needed in low-to middle-income countries where there are many practical, logistical and funding challenges. Basic requirements for clinical trials include identification of the biting species of snake in every case; the use of objective, clinically-relevant endpoints, such as restoration of blood coagulability; definition of inclusion, exclusion and withdrawal criteria; assurance of antivenom safety; ethical considerations; inclusion of one or more control (comparator) groups; and analysis based on intention to treat. The highest quality evidence comes from Phase II and larger Phase III studies that have been designed as statistically powerful, randomized, controlled trials (RCTs), ideally with blinding of patients and investigators to avoid bias. Because of the challenges to carrying out clinical trials of antivenoms, Phase IV trials (post-marketing surveillance) are potentially more important and useful than for most other drugs.
Collapse
Affiliation(s)
- David J Williams
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, 3010, Australia; Charles Campbell Toxinology Centre, School of Medicine and Health Sciences, University of Papua New Guinea, Boroko, NCD, 121, Papua New Guinea.
| | - Abdulrazaq G Habib
- Department of Medicine, Bayero University Kano, Aminu Kano Teaching Hospital, PMB 3452, Kano, Nigeria.
| | - David A Warrell
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, 3010, Australia; Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
5
|
Gutiérrez JM, Solano G, Pla D, Herrera M, Segura Á, Vargas M, Villalta M, Sánchez A, Sanz L, Lomonte B, León G, Calvete JJ. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins (Basel) 2017; 9:toxins9050163. [PMID: 28505100 PMCID: PMC5450711 DOI: 10.3390/toxins9050163] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023] Open
Abstract
Animal-derived antivenoms constitute the mainstay in the therapy of snakebite envenoming. The efficacy of antivenoms to neutralize toxicity of medically-relevant snake venoms has to be demonstrated through meticulous preclinical testing before their introduction into the clinical setting. The gold standard in the preclinical assessment and quality control of antivenoms is the neutralization of venom-induced lethality. In addition, depending on the pathophysiological profile of snake venoms, the neutralization of other toxic activities has to be evaluated, such as hemorrhagic, myotoxic, edema-forming, dermonecrotic, in vitro coagulant, and defibrinogenating effects. There is a need to develop laboratory assays to evaluate neutralization of other relevant venom activities. The concept of the 3Rs (Replacement, Reduction, and Refinement) in Toxinology is of utmost importance, and some advances have been performed in their implementation. A significant leap forward in the study of the immunological reactivity of antivenoms against venoms has been the development of “antivenomics”, which brings the analytical power of mass spectrometry to the evaluation of antivenoms. International partnerships are required to assess the preclinical efficacy of antivenoms against snake venoms in different regions of the world in order to have a detailed knowledge on the neutralizing profile of these immunotherapeutics.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Davinia Pla
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Sección de Química Analítica, Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| |
Collapse
|
6
|
Gutiérrez JM, Herrera C. The analgesics morphine and tramadol do not alter the acute toxicity induced by Bothrops asper snake venom in mice. Toxicon 2014; 81:54-7. [PMID: 24530232 DOI: 10.1016/j.toxicon.2014.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 11/20/2022]
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 1000, Costa Rica.
| | - Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|