1
|
Hérnández-Elizárraga VH, Vega-Tamayo JE, Olguín-López N, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis. J Proteomics 2023; 288:104984. [PMID: 37536522 DOI: 10.1016/j.jprot.2023.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Millepora alcicornis is a reef-forming cnidarian widely distributed in the Mexican Caribbean. Millepora species or "fire corals" inflict a painful stinging reaction in humans when touched. Even though hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, there are few reports regarding the diversity of toxins synthesized by fire corals. Here, based on transcriptomic analysis of M. alcicornis, several predicted proteins that show amino acid sequence similarity to toxins were identified, including neurotoxins, metalloproteases, hemostasis-impairing toxins, serin proteases, cysteine-rich venom proteins, phospholipases, complement system-impairing toxins, phosphodiesterases, pore-forming toxins, and L-aminoacid oxidases. The soluble nematocyst proteome of this organism was shown to induce hemolytic, proteolytic, and phospholipase A2 effects by gel zymography. Protein bands or spots on 1D- and 2D-PAGE gels corresponding to zones of hemolytic and enzymatic activities were excised, subjected to in-gel digestion with trypsin, and analyzed by mass spectrometry. These proteins exhibited sequence homology to PLA2s, metalloproteinases, pore-forming toxins, and neurotoxins, such as actitoxins and CrTX-A. The complex array of venom-related transcripts that were identified in M. alcicornis, some of which are first reported in "fire corals", provide novel insight into the structural richness of Cnidarian toxins and their distribution among species. SIGNIFICANCE: Marine organisms are a promising source of bioactive compounds with valuable contributions in diverse fields such as human health, pharmaceuticals, and industrial application. Currently, not much attention has been paid to the study of fire corals, which possess a variety of molecules that exhibit diverse toxic effects and therefore have great pharmaceutical and biotechnological potential. The isolation and identification of novel marine-derived toxins by classical approaches are time-consuming and have low yields. Thus, next-generation strategies, like base-'omics technologies, are essential for the high-throughput characterization of venom compounds such as those synthesized by fire corals. This study moves the field forward because it provides new insights regarding the first occurrence of diverse toxin groups in Millepora alcicornis. The findings presented here will contribute to the current understanding of the mechanisms of action of Millepora toxins. This research also reveals important information related to the potential role of toxins in the defense and capture of prey mechanisms and for designing appropriate treatments for fire coral envenomation. Moreover, due to the lack of information on the taxonomic identification of Millepora, the insights presented here can advise the taxonomic classification of the species of this genus.
Collapse
Affiliation(s)
- Víctor Hugo Hérnández-Elizárraga
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; University of Minnesota Genomics Center, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Norma Olguín-López
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; División Química y Energías Renovables, Universidad Tecnológica de San Juan del Río. Av La Palma No 125 Vista Hermosa, 76800 San Juan del Río, Qro, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico.
| |
Collapse
|
2
|
FIOROTTI HELENAB, SOARES THIAGOG, BORGES MÁRCIAH, MATAVEL ALESSANDRA, CAMPOS FABIANAV, FIGUEIREDO SUELYGDE. Preliminary report on the hemagglutinating activity of the Scorpaena plumieri fish venom. AN ACAD BRAS CIENC 2022; 94:e20200976. [DOI: 10.1590/0001-376520220976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- HELENA B. FIOROTTI
- Universidade Federal do Espírito Santo, Brazil; Instituto Butantan, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Fish Cytolysins in All Their Complexity. Toxins (Basel) 2021; 13:toxins13120877. [PMID: 34941715 PMCID: PMC8704401 DOI: 10.3390/toxins13120877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023] Open
Abstract
The majority of the effects observed upon envenomation by scorpaenoid fish species can be reproduced by the cytolysins present in their venoms. Fish cytolysins are multifunctional proteins that elicit lethal, cytolytic, cardiovascular, inflammatory, nociceptive, and neuromuscular activities, representing a novel class of protein toxins. These large proteins (MW 150–320 kDa) are composed by two different subunits, termed α and β, with about 700 amino acid residues each, being usually active in oligomeric form. There is a high degree of similarity between the primary sequences of cytolysins from different fish species. This suggests these molecules share similar mechanisms of action, which, at least regarding the cytolytic activity, has been proved to involve pore formation. Although the remaining components of fish venoms have interesting biological activities, fish cytolysins stand out because of their multifunctional nature and their ability to reproduce the main events of envenomation on their own. Considerable knowledge about fish cytolysins has been accumulated over the years, although there remains much to be unveiled. In this review, we compiled and compared the current information on the biochemical aspects and pharmacological activities of fish cytolysins, going over their structures, activities, mechanisms of action, and perspectives for the future.
Collapse
|
4
|
Hatakeyama T, Kishigawa A, Unno H. Molecular cloning and characterization of the two putative toxins expressed in the venom of the devil stinger Inimicus japonicus. Toxicon 2021; 201:9-20. [PMID: 34391787 DOI: 10.1016/j.toxicon.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Various proteins are involved in fish venom toxicity, but limited information is available regarding their structure and mode of action. Here, we analyzed RNA transcripts in the dorsal spine of the devil stinger Inimicus japonicus using next-generation sequencing (NGS), and identified two putative protein toxins, a natterin-like protein (Ij-natterin) and a phospholipase A2 (Ij-PLA2), as well as a previously reported stonustoxin-like protein. The deduced amino acid sequence of Ij-natterin suggested that it acts as a pore-forming toxin through the cooperation of the N-terminal lectin-like domain and the C-terminal pore-forming domain. Ij-PLA2 showed significant homology with secreted Ca2+-dependent PLA2s from snake venom and mammals (sPLA2-I/II). The recombinant Ij-PLA2 protein exhibited PLA2 activity in the absence of Ca2+, in contrast to canonical sPLA2-I/II. Comparison of the amino acid sequences of Ij-PLA2 with the other sPLA2-I/II suggests that the C-terminal extended peptide region of Ij-PLA2 is involved in its Ca2+-independent activity.
Collapse
Affiliation(s)
- Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan.
| | - Akihiro Kishigawa
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| | - Hideaki Unno
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki, 852-8521, Japan
| |
Collapse
|
5
|
Costa FLS, De Lima ME, Figueiredo SG, Ferreira RS, Prates NS, Sakamoto T, Salas CE. Sequence analysis of the cDNA encoding for SpCTx: a lethal factor from scorpionfish venom ( Scorpaena plumieri). J Venom Anim Toxins Incl Trop Dis 2018; 24:24. [PMID: 30181739 PMCID: PMC6114736 DOI: 10.1186/s40409-018-0158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/03/2018] [Indexed: 12/03/2022] Open
Abstract
Background Lethal factors are multifunctional oligomeric proteins found in the venomous apparatus of Scorpaeniformes fish. These toxins elicit not only an array of biological responses in vitro but also cardiovascular disorders and strong hemolytic, nociceptive and edematogenic activities in vivo. This work describes the cloning and molecular identification of two toxin subunits, denominated Sp-CTx-α and Sp-CTx-β, from scorpionfish venom (Scorpaena plumieri). Methods The primary structures were deduced after cDNA amplification by PCR with primers from conserved sequences described in Scorpaeniformes toxins. Following DNA sequencing and bioinformatic analysis, the tridimensional structures of both subunits were modeled. Results The translated sequences (702 amino acids, each subunit) show homology with other lethal factors, while alignment between Sp-CTx-α and Sp-CTx-β shows 54% identity. The subunits lack N-terminal signal sequences and display masses of approximately 80 kDa each. Both Sp-CTx subunits display a B30.2/SPRY domain at the C-terminal region with typically conserved motifs as described in these toxins. Secondary structure prediction identified six α-helices 18 residues long in both α and β subunits, some of them amphiphilic with their N-terminal flanked by many basic residues, creating a cationic site associated with the cytolytic activity of these toxins. Antimicrobial potential sites were identified in Sp-CTx and share some features with other peptides presenting variable and broad-spectrum activity. A phylogenetic tree built to represent these toxins supports the proximity between scorpionfish, lionfish and stonefish. Conclusion The study identified a putative toxin protein whose primary structure is similar to other fish toxins and with potential for production of antivenom against scorpionfish envenomation in Brazil. As a prelude to structure-function studies, we propose that the toxin is structurally related to pore-forming marine toxins. Electronic supplementary material The online version of this article (10.1186/s40409-018-0158-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fábio L S Costa
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Maria Elena De Lima
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Suely G Figueiredo
- 2Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES Brazil
| | - Rafaela S Ferreira
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Núbia S Prates
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Tetsu Sakamoto
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Carlos E Salas
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| |
Collapse
|
6
|
Borges MH, Andrich F, Lemos PH, Soares TG, Menezes TN, Campos FV, Neves LX, Castro-Borges W, Figueiredo SG. Combined proteomic and functional analysis reveals rich sources of protein diversity in skin mucus and venom from the Scorpaena plumieri fish. J Proteomics 2018; 187:200-211. [PMID: 30098406 DOI: 10.1016/j.jprot.2018.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
The biological activities observed upon envenomation by Scorpaena plumieri could be linked to both the venom and the skin mucus. Through a proteomic/functional approach we analyzed protein composition and biological activities of the venom and skin mucus. We identified 885 proteins: 722 in the Venomous Apparatus extracts (Sp-VAe) and 391 in the Skin Mucus extract (Sp-SMe), with 494 found exclusively in Sp-VAe, being named S. plumieri Venom Proteins (Sp-VP), while 228 were found in both extracts. The majority of the many proteins identified were not directly related to the biological activities reported here. Nevertheless, some were classified as toxins/potentially interesting molecules: lectins, proteases and protease inhibitors were detected in both extracts, while the pore-forming toxin and hyaluronidase were associated with Sp-VP. Proteolytic and anti-microbial activities were linked to both extracts, while the main toxic activities - cardiovascular, inflammatory, hemolytic and nociceptive - were elicited only by Sp-VAe. Our study provided a clear picture on the composition of the skin mucus and the venom. We also show that the classic effects observed upon envenomation are produced by molecules from the venomous gland. Our results add to the growing catalogue of scorpaeniform fish venoms and their skin mucus proteins. SIGNIFICANCE In this study a large number of proteins - including classical and non-classical toxins - were identified in the venomous apparatus and the skin mucus extracts of the Scorpaena plumieri fish through shotgun proteomic approach. It was shown that the toxic effects observed upon envenomation are elicited by molecules originated from the venomous gland. These results add to the growing catalogue of scorpaeniform fish venoms and their skin mucus proteins - so scarcely explored when compared to the venoms and bioactive components of terrestrial animals. Data are available via ProteomeXchange with identifier PXD009983.
Collapse
Affiliation(s)
- Márcia H Borges
- Laboratório de Proteômica, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Filipe Andrich
- Laboratório de Química de Proteínas, Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Pedro H Lemos
- Laboratório de Química de Proteínas, Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Thiago G Soares
- Laboratório de Proteômica, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago N Menezes
- Laboratório de Química de Proteínas, Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Fabiana V Campos
- Laboratório de Química de Proteínas, Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Leandro X Neves
- Laboratório de Enzimologia e Proteômica, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | - Suely G Figueiredo
- Laboratório de Química de Proteínas, Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil.
| |
Collapse
|
7
|
Malacarne PF, Menezes TN, Martins CW, Naumann GB, Gomes HL, Pires RGW, Figueiredo SG, Campos FV. Advances in the characterization of the Scorpaena plumieri cytolytic toxin (Sp-CTx). Toxicon 2018; 150:220-227. [PMID: 29902539 DOI: 10.1016/j.toxicon.2018.06.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023]
Abstract
Proteins that account for the hemolytic activity found in scorpaeniform fish venoms are responsible for the majority of the effects observed upon envenomation, for instance, neurotoxic, cardiotoxic and inflammatory effects. These multifunctional toxins, described as protein lethal factors and referred to as cytolysins, are known to be extremely labile molecules. In the present work, we endeavored to overcome this constraint by determining optimal storage conditions for Sp-CTx, the major bioactive component from the scorpionfish Scorpaena plumieri venom. This cardiotoxic hemolytic cytolysin is a large dimeric glycoprotein (subunits of ≈65 kDa) with pore-forming ability. We were able to establish storage conditions that allowed us to keep the toxin partially active for up to 60 days. Stability was achieved by storing Sp-CTx at -80 and -196 °C in the presence of glycerol 10% in a pH 7.4 solution. It was demonstrated that the hemolytic activity of Sp-CTx is calcium dependent, being abolished by EDTA and zinc ions. Furthermore, the toxin exhibited its maximal hemolytic activity at pH between 8 and 9, displaying typical N- and O- linked glycoconjugated residues (galactose (1-4) N-acetylglucosamine and sialic acid (2-3) galactose in N- and/or O-glycan complexes). The hemolytic activity of Sp-CTx was inhibited by phosphatidylglycerol and phosphatidylethanolamine, suggesting a direct electrostatic interaction lipid - toxin in the pore-formation mechanism of action of this toxin. In addition, we observed that the hemolytic activity was inhibited by increasing doses of cholesterol. Finally, we were able to show, for first time, that Sp-CTx is at least partially responsible for the pain and inflammation observed upon envenomation. However, while the edema induced by Sp-CTx was reduced by pre-treatment with aprotinin and HOE-140, pointing to the involvement of the kallikrein-kinin system in this response, these drugs had no significant effect in the toxin-induced nociception. Taken together, our results could suggest that, as has been already reported for other fish cytolysins, Sp-CTx acts mostly through lipid-dependent pore formation not only in erythrocytes but also in other cell types, which could account for the pain observed upon envenomation. We believe that the present work paves the way towards the complete characterization of fish cytolysins.
Collapse
Affiliation(s)
- Pedro F Malacarne
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Thiago N Menezes
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Cleciane W Martins
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Gustavo B Naumann
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil; Diretoria do Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, 30510-010, Belo Horizonte, MG, Brazil.
| | - Helena L Gomes
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Rita G W Pires
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Suely G Figueiredo
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Fabiana V Campos
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| |
Collapse
|
8
|
Khalil AM, Wahsha MA, Abu Khadra KM, Khalaf MA, Al-Najjar TH. Biochemical and histopathological effects of the stonefish (Synanceia verrucosa) venom in rats. Toxicon 2017; 142:45-51. [PMID: 29294314 DOI: 10.1016/j.toxicon.2017.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/30/2017] [Indexed: 01/22/2023]
Abstract
The Reef Stonefish (Synanceia verrucosa) is one of the most dangerous venomous fish known, and has caused occasional human fatalities. The present study was designed to examine some of the pathological effects of the venom from this fish in Sprague Dawley rats. Crude venom was extracted from venom glands of the dorsal spines of stonefish specimens collected from coral reefs in the Gulf of Aqaba (in the northeastern branch of the Red Sea). The rats were given intramuscular injections of the venom and acute toxicity and effect on selected serum marker enzymes as well as normal architecture of vital organs were evaluated. The rat 24 h LD50 was 38 μg/kg body weight. The serum biochemical markers; alanine transaminase (ALT), lactate dehydrogenase (LDH) and creatine kinase (CK) increased after 6 h of administration of a sub lethal dose of the venom and remained significantly raised at 24 h. Amylase levels also significantly increased after venom injection. The venom caused histological damage manifested as an interstitial hemorrhage, inflammatory cell infiltration, and necrosis. The demonstrated rises in the levels of different critical biochemical parameters in the serum may have led to the observed abnormal morphological changes in these organs. These results may account for some of the clinical manifestations observed in victims of stonefish envenomation. Thus, the presented data provide further in vivo evidence of the stonefish toxic effects that may threaten human life and call for the need for special measures to be considered.
Collapse
Affiliation(s)
- Ahmad M Khalil
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan.
| | - Mohammad A Wahsha
- Marine Science Station, The University of Jordan and Yarmouk University, Jordan; Department of Marine Biology, The University of Jordan, Aqaba branch, Jordan
| | | | - Maroof A Khalaf
- Marine Science Station, The University of Jordan and Yarmouk University, Jordan; Department of Marine Biology, The University of Jordan, Aqaba branch, Jordan
| | - Tariq H Al-Najjar
- Marine Science Station, The University of Jordan and Yarmouk University, Jordan; Department of Marine Biology, The University of Jordan, Aqaba branch, Jordan
| |
Collapse
|
9
|
Sáenz A, Ortiz N, Lomonte B, Rucavado A, Díaz C. Comparison of biochemical and cytotoxic activities of extracts obtained from dorsal spines and caudal fin of adult and juvenile non-native Caribbean lionfish (Pterois volitans/miles). Toxicon 2017; 137:158-167. [DOI: 10.1016/j.toxicon.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
10
|
Dos Santos DMRC, de Souza CB, Pereira HJV. Angiotensin converting enzymes in fish venom. Toxicon 2017; 131:63-67. [PMID: 28284848 DOI: 10.1016/j.toxicon.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
Animal venoms are multifaceted mixtures, including proteins, peptides and enzymes produced by animals in defense, predation and digestion. These molecules have been investigated concerning their molecular mechanisms associated and possible pharmacological applications. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. Scorpaena plumieri is the most venomous fish in the Brazilian fauna and is responsible for relatively frequent accidents involving anglers and bathers. In humans, its venom causes edema, erythema, ecchymoses, nausea, vomiting, and syncope. Recently, the presence of a type of angiotensin converting enzyme (ACE) activity in the venom of Thalassophryne nattereri and Scorpaena plumieri, endemic fishes in northeastern coast of Brazil, has been described. The ACE converts angiotensin I (Ang I) into angiotensin II (Ang II) and inactivates bradykinin, there by regulating blood pressure and electrolyte homeostasis, however, their function in these venoms remains an unknown. This article provides an overview of the current knowledge on ACE in the venoms of Thalassophryne nattereri and Scorpaena plumier.
Collapse
|
11
|
Fan L, Luo J, Li X, Chen M, Shu W, Qu X. Activation of Na +/H + exchanger other than formation of transmembrane pore underlies the cytotoxicity of nematocyst venom from Chrysaora helvola Brandt jellyfish. Toxicon 2017; 133:162-168. [PMID: 28526336 DOI: 10.1016/j.toxicon.2017.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022]
Abstract
We previously reported unexpected apoptosis-like cell death induced by nematocyst venom (NV) from Chrysaora helvola Brandt (C. helvola) jellyfish. To assess whether the pore formation mechanism underlay the action of NV, the change in cell membrane permeability was studied in both chicken erythrocytes and human CNE-2 cells. Initially, paradoxical results were derived from osmoprotectant protection assays. Polyethylene glycol (PEG)2000, which completely inhibited the NV induced hemolysis, failed to protect CNE-2 cells. Detailed experiments showed that PEG protection from hemolysis is concentration dependent and indicated caution when estimating the pore size formed by NV with the osmotic protection method. NV-treated CNE-2 cells remained impermeable to dyes with various molecular weights (MWs) (622.6-40,000 Da). Furthermore, membrane depolarization and selective permeability to Na+ other than K+ were induced in CNE-2 cells. No oxidative damage to the cell membrane was detected. Amiloride, an inhibitor of Na+/H+ exchanger (NHE), substantially protected both CNE-2 cells and erythrocytes from NV. Combined with the previously reported increase in intracellular pH, we supposed that NV activated plasma membrane NHE without forming transmembrane pores. Interestingly, glutathione (GSH) showed significant protection to CNE-2 cells while potentiating the hemolytic power of NV. This finding may suggest a key role of reactive oxygen species (ROS) in the cytotoxicity of NV. To the best of our knowledge, this is the first report that a hemolytic jellyfish venom acts through NHE in a manner other than compromising membrane integrity. The current work provides new insight into the arsenal of toxic jellyfishes.
Collapse
Affiliation(s)
- Lanlan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, 530001, Nanning, China
| | - Jun Luo
- School of Pharmacy, Guangxi University of Chinese Medicine, 530001, Nanning, China
| | - Xiaoyong Li
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China
| | - Ming Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 541004, Guilin, China
| | - Wei Shu
- Department of Cell Biology & Genetics, Guangxi Medicinal University, Nanning, 530021, China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| |
Collapse
|
12
|
Campos FV, Menezes TN, Malacarne PF, Costa FLS, Naumann GB, Gomes HL, Figueiredo SG. A review on the Scorpaena plumieri fish venom and its bioactive compounds. J Venom Anim Toxins Incl Trop Dis 2016; 22:35. [PMID: 28031733 PMCID: PMC5175314 DOI: 10.1186/s40409-016-0090-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/30/2016] [Indexed: 01/22/2023] Open
Abstract
The most poisonous fish species found along the Brazilian coast is the spotted scorpionfish Scorpaena plumieri. Though hardly ever life-threatening to humans, envenomation by S. plumieri can be quite hazardous, provoking extreme pain and imposing significant socioeconomic costs, as the victims may require days to weeks to recover from their injuries. In this review we will walk the reader through the biological features that distinguish this species as well as the current epidemiological knowledge related to the envenomation and its consequences. But above all, we will discuss the challenges involved in the biochemical characterization of the S. plumieri venom and its compounds, focusing then on the successful isolation and pharmacological analysis of some of the bioactive molecules responsible for the effects observed upon envenomation as well as on experimental models. Despite the achievement of considerable progress, much remains to be done, particularly in relation to the non-proteinaceous components of the venom. Therefore, further studies are necessary in order to provide a more complete picture of the venom’s chemical composition and physiological effects. Given that fish venoms remain considerably less studied when compared to terrestrial venoms, the exploration of their full potential opens a myriad of possibilities for the development of new drug leads and tools for elucidating the complex physiological processes.
Collapse
Affiliation(s)
- Fabiana V Campos
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| | - Thiago N Menezes
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| | - Pedro F Malacarne
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| | - Fábio L S Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Fisiológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Gustavo B Naumann
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil ; Diretoria do Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG Brazil
| | - Helena L Gomes
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| | - Suely G Figueiredo
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| |
Collapse
|
13
|
Tenório HDA, Costa RB, Costa Marques ME, Victor Dos Santos CW, Gomes FS, Vieira Pereira HJ. Angiotensins processing activities in the venom and epidermic mucus of Scorpaena plumieri. Toxicon 2016; 119:92-8. [PMID: 27215174 DOI: 10.1016/j.toxicon.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022]
Abstract
The venom of marine animals is a rich source of compounds with remarkable selectivity and functional diversity. Scorpaena plumieri is the most venomous fish in the Brazilian fauna and is responsible for relatively frequent accidents involving anglers and bathers. In humans, its venom causes edema, erythema, ecchymoses, anxiety, nausea, vomiting, and syncope. The venom is chemically characterized by Sp-CTx, a enzyme able to generate an initial endothelium-dependent relaxation response, followed by a contraction response. This study sought to investigate the proteolytic activities regarding vasopeptides angiotensin I and II. Both the venom and the epidermal mucus presented angiotensin conversion activity for angiotensin I, as well as a capacity to form Ang 1-7 directly via Ang I and II. Captopril (10 μM) and EDTA (1 mM) were able to abolish the converting activity of the venom and the epidermal mucus, representing the first description of a converting activity in S. plumieri venom and epidermal mucus.
Collapse
Affiliation(s)
| | - Ricardo Bezerra Costa
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brazil
| | | | | | - Francis Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brazil
| | | |
Collapse
|
14
|
Full-Length cDNA Cloning, Molecular Characterization and Differential Expression Analysis of Lysophospholipase I from Ovis aries. Int J Mol Sci 2016; 17:ijms17081206. [PMID: 27483239 PMCID: PMC5000604 DOI: 10.3390/ijms17081206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023] Open
Abstract
Lysophospholipase I (LYPLA1) is an important protein with multiple functions. In this study, the full-length cDNA of the LYPLA1 gene from Ovis aries (OaLypla1) was cloned using primers and rapid amplification of cDNA ends (RACE) technology. The full-length OaLypla1 was 2457 bp with a 5′-untranslated region (UTR) of 24 bp, a 3′-UTR of 1740 bp with a poly (A) tail, and an open reading frame (ORF) of 693 bp encoding a protein of 230 amino acid residues with a predicted molecular weight of 24,625.78 Da. Phylogenetic analysis showed that the OaLypla1 protein shared a high amino acid identity with LYPLA1 of Bos taurus. The recombinant OaLypla1 protein was expressed and purified, and its phospholipase activity was identified. Monoclonal antibodies (mAb) against OaLypla1 that bound native OaLypla1 were generated. Real-time PCR analysis revealed that OaLypla1 was constitutively expressed in the liver, spleen, lung, kidney, and white blood cells of sheep, with the highest level in the kidney. Additionally, the mRNA levels of OaLypla1 in the buffy coats of sheep challenged with virulent or avirulent Brucella strains were down-regulated compared to untreated sheep. The results suggest that OaLypla1 may have an important physiological role in the host response to bacteria. The function of OaLypla1 in the host response to bacterial infection requires further study in the future.
Collapse
|
15
|
Gomes HL, Menezes TN, Malacarne PF, Roman-Campos D, Gondim AN, Cruz JS, Vassallo DV, Figueiredo SG. Cardiovascular effects of Sp-CTx, a cytolysin from the scorpionfish (Scorpaena plumieri) venom. Toxicon 2016; 118:141-8. [PMID: 27155562 DOI: 10.1016/j.toxicon.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
Fish venom cytolysins are multifunctional proteins that in addition to their cytolytic/hemolytic effects display neurotoxic, cardiotoxic and inflammatory activities, being described as "protein lethal factors". A pore-forming cytolysin called Sp-CTx (Scorpaena plumieriCytolytic Toxin) has been recently purified from the venom of the scorpionfish Scorpaena plumieri. It is a glycoprotein with dimeric constitution, comprising subunits of approximately 65 kDa. Previous studies have revealed that this toxin has a vasorelaxant activity that appears to involve the L-arginine-nitric oxide synthase pathway; however its cardiovascular effects have not been fully comprehended. The present study examined the cardiovascular effects of Sp-CTx in vivo and in vitro. In anesthetized rats Sp-CTx (70 μg/kg i.v) produced a biphasic response which consisted of an initial systolic and diastolic pressure increase followed by a sustained decrease of these parameters and the heart rate. In isolated rats hearts Sp-CTx (10(-9) to 5 × 10(-6) M) produced concentration-dependent and transient ventricular positive inotropic effect and vasoconstriction response on coronary bed. In papillary muscle, Sp-CTx (10(-7) M) also produced an increase in contractile isometric force, which was attenuated by the catecholamine releasing agent tyramine (100 μM) and the β-adrenergic antagonist propranolol (10 μM). On isolated ventricular cardiomyocytes Sp-CTx (1 nM) increased the L-type Ca(2+) current density. The results show that Sp-CTx induces disorders in the cardiovascular system through increase of sarcolemmal calcium influx, which in turn is partially caused by the release of endogenous noradrenaline.
Collapse
Affiliation(s)
- Helena L Gomes
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Thiago N Menezes
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Pedro F Malacarne
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Danilo Roman-Campos
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Antonio N Gondim
- Departamento de Educação, Universidade do Estado da Bahia, Guanambi, BA, Brazil
| | - Jader S Cruz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Dalton V Vassallo
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Suely G Figueiredo
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
16
|
Ziegman R, Alewood P. Bioactive components in fish venoms. Toxins (Basel) 2015; 7:1497-531. [PMID: 25941767 PMCID: PMC4448160 DOI: 10.3390/toxins7051497] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/12/2023] Open
Abstract
Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules.
Collapse
Affiliation(s)
- Rebekah Ziegman
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Paul Alewood
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
17
|
Identification of C-type isolectins in the venom of the scorpionfish Scorpaena plumieri. Toxicon 2015; 95:67-71. [DOI: 10.1016/j.toxicon.2015.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/18/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022]
|
18
|
Costa FLS, Lima MED, Pimenta AC, Figueiredo SG, Kalapothakis E, Salas CE. Expressed sequence tags in venomous tissue of Scorpaena plumieri (Scorpaeniformes: Scorpaenidae). NEOTROPICAL ICHTHYOLOGY 2014. [DOI: 10.1590/1982-0224-20130149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Species of the family Scorpaenidae are responsible for accidents and sporadic casualties by the shore they inhabit. The species Scorpaena plumierifrom this family populate the Northeastern and Eastern coast of Brazil causing human envenomation characterized by local and systemic symptoms. In experimental animals the venom induces cardiotoxic, hypotensive, and airway respiratory effects. As first step to identify the venom components we isolated gland mRNA to produce a cDNA library from the fish gland. This report describes the partial sequencing of 356 gland transcripts from S. plumieri. BLAST analysis of transcripts showed that 30% were unknown sequences, 17% hypothetical proteins, 17% related to metabolic enzymes, 14% belonged to signal transducing functions and the remaining groups (7-8%) composed by gene related with expressing proteins, regulatory proteins and structural proteins. A considerable number of these EST were not found in available databases suggesting the existence of new proteins and/or functions yet to be discovered. By screening the library with antibodies against a lectin fraction from S. plumierivenom we identified several clones whose DNA sequence showed similarities with lectins found in fish. In silicoanalysis of these clones confirm the identity of these molecules in the venom gland of S. plumieri.
Collapse
|
19
|
Chuang PS, Shiao JC. Toxin gene determination and evolution in scorpaenoid fish. Toxicon 2014; 88:21-33. [DOI: 10.1016/j.toxicon.2014.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/22/2023]
|
20
|
Lopes-Ferreira M, Ramos AD, Martins IA, Lima C, Conceição K, Haddad V. Clinical manifestations and experimental studies on the spine extract of the toadfish Porichthys porosissimus. Toxicon 2014; 86:28-39. [PMID: 24814010 DOI: 10.1016/j.toxicon.2014.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/29/2014] [Indexed: 12/29/2022]
Abstract
Toadfish are fish from the family Batrachoididae that are found in marine and brackish environment around the world. Among the toadfish, Porichthys genus is very common, where Porichthys porosissimus, also called Atlantic Midshipman is found in Southwest Atlantic, from Rio de Janeiro, Brazil to eastern Argentina. There was no consensus about the classification of the genus Porichthys as venomous fish because so far there are no published studies regarding human envenomations and/or toxic activities induced in animal models. Herein, we report two conclusive envenoming in human beings caused by P porosissimus spines, with clear signs and symptoms that were very important for the development of our experimental studies. We demonstrated that the P. porosissimus spine extract, now venom, can induce nociceptive and edematogenic responses in mice as well an induction of an inflammatory response elicited by intravital microscopy and leukocyte migration. Finally, we identified in the P. porosissimus spine extract, through analysis by mass spectrometry, the presence of proteins previously detected in the venoms of other fish species and other venomous animals. We believe that based on our studies we will dismiss the non-venomous nature of this fish and clarify this issue.
Collapse
Affiliation(s)
- Mônica Lopes-Ferreira
- Immunoregulation Unit, Special Laboratory of Applied Toxinology (CEPID/FAPESP), Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil.
| | - Anderson Daniel Ramos
- Immunoregulation Unit, Special Laboratory of Applied Toxinology (CEPID/FAPESP), Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Itamar Alves Martins
- Zoology Laboratory, Biological Sciences Department, Universidade de Taubaté, São Paulo State, Brazil
| | - Carla Lima
- Immunoregulation Unit, Special Laboratory of Applied Toxinology (CEPID/FAPESP), Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Katia Conceição
- Immunoregulation Unit, Special Laboratory of Applied Toxinology (CEPID/FAPESP), Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil; Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, Brazil
| | - Vidal Haddad
- Dermatology Departament, Botucatu Medical School, Univ Estadual Paulista, Botucatu, São Paulo State, Brazil
| |
Collapse
|