1
|
Tasima LJ, Kavazoi VK, Lima EOVD, Grego KF, Tanaka-Azevedo AM. An alternative method for comparing hemorrhagic activity of snake venoms following one of the 3R's principles. Toxicon 2024; 250:108111. [PMID: 39332502 DOI: 10.1016/j.toxicon.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Venom-induced hemorrhage analysis usually is performed by Minimum Hemorrhagic Dose (MHD), however a similar method can be used to compare venoms with fewer laboratory animals. Our work compared the MHD of five different venoms, with the size of hemorrhagic spot, finding good correlations in the results. Considering the 3Rs principle, we propose the use of the hemorrhagic spot method to compare hemorrhagic activity of snake venoms, rather than using the MHD method, since the first one needs 5 times less animals than the other.
Collapse
Affiliation(s)
- Lídia Jorge Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Victor Koiti Kavazoi
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Eduardo Oliveira Venancio de Lima
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | | | - Anita Mitico Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
2
|
Marriott AE, Casewell NR, Lilley E, Gutiérrez JM, Ainsworth S. Improving in vivo assays in snake venom and antivenom research: A community discussion. F1000Res 2024; 13:192. [PMID: 38708289 PMCID: PMC11066530 DOI: 10.12688/f1000research.148223.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/07/2024] Open
Abstract
On the 26 th January 2023, a free to attend, 'improving in vivo snake venom research: a community discussion' meeting was held virtually. This webinar brought together researchers from around the world to discuss current neutralisation of venom lethality mouse assays that are used globally to assess the efficacy of therapies for snakebite envenoming. The assay's strengths and weaknesses were highlighted, and we discussed what improvements could be made to refine and reduce animal testing, whilst supporting preclinical antivenom and drug discovery for snakebite envenoming. This report summarises the issues highlighted, the discussions held, with additional commentary on key perspectives provided by the authors.
Collapse
Affiliation(s)
- Amy E Marriott
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, L3 5RF, UK
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Elliot Lilley
- National Centre for the Replacement, Reduction and Refinement of Animals in Research, London, NW1 2BE, UK
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, L3 5RF, UK
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
3
|
De Jesus R, Tratner AE, Madrid A, Rivera-Mondragón A, Navas GE, Lleonart R, Britton GB, Fernández PL. Body Temperature Drop as a Humane Endpoint in Snake Venom-Lethality Neutralization Tests. Toxins (Basel) 2023; 15:525. [PMID: 37755951 PMCID: PMC10535418 DOI: 10.3390/toxins15090525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Snake venom neutralization potency tests are required for quality control assessment by manufacturers and regulatory authorities. These assays require the use of large numbers of mice that manifest severe signs associated with pain and distress and long periods of suffering. Despite this, many animals make a full recovery; therefore, the observation of clinical signs as a predictor of animal death is highly subjective and could affect the accuracy of the results. The use of a more objective parameter such as body temperature measurement could help establish a humane endpoint that would contribute to significantly reducing the suffering of large numbers of animals. We determined the temperature drop in BALB/c mice exposed to the mixtures of Bothrops asper or Lachesis stenophrys venom and a polyvalent antivenom by using an infrared thermometer. Our data show that, based on the temperature change from baseline, it is possible to predict which animals will survive during the first 3 h after inoculation. The data provided in this study may contribute to future reductions in animal suffering, in concordance with general trends in the use of laboratory animals for the quality control of biologicals.
Collapse
Affiliation(s)
- Rosa De Jesus
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City 0843-01103, Panama; (R.D.J.); (A.M.)
| | - Adam E. Tratner
- Florida State University, Republic of Panama Campus, City of Knowledge, Panama City 0843-01103, Panama;
- Centro de Neurociencias, INDICASAT AIP, City of Knowledge, Panama City 0843-01103, Panama
| | - Alanna Madrid
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City 0843-01103, Panama; (R.D.J.); (A.M.)
| | - Andrés Rivera-Mondragón
- Instituto Especializado de Análisis (IEA), Universidad de Panamá, Panama City P.O. Box 3366, Panama; (A.R.-M.); (G.E.N.)
| | - Goy E. Navas
- Instituto Especializado de Análisis (IEA), Universidad de Panamá, Panama City P.O. Box 3366, Panama; (A.R.-M.); (G.E.N.)
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, City of Knowledge, Panama City 0843-01103, Panama;
| | - Gabrielle B. Britton
- Centro de Neurociencias, INDICASAT AIP, City of Knowledge, Panama City 0843-01103, Panama
| | - Patricia L. Fernández
- Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, City of Knowledge, Panama City 0843-01103, Panama;
| |
Collapse
|
4
|
Cavalcante JDS, Nogueira Júnior FA, Bezerra Jorge RJ, Almeida C. Pain modulated by Bothrops snake venoms: Mechanisms of nociceptive signaling and therapeutic perspectives. Toxicon 2021; 201:105-114. [PMID: 34425141 DOI: 10.1016/j.toxicon.2021.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Snake venoms are substances mostly composed by proteins and peptides with high biological activity. Local and systemic effects culminate in clinical manifestations induced by these substances. Pain is the most uncomfortable condition, but it has not been well investigated. This review discusses Bothrops snakebite-induced nociception, highlighting molecules involved in the mediation of this process and perspectives in treatment of pain induced by Bothrops snake venoms (B. alternatus, B. asper, B. atrox, B. insularis, B. jararaca, B. pirajai, B. jararacussu, B. lanceolatus, B. leucurus, B. mattogrossensis, B. moojeni). We highlight, the understanding of the nociceptive signaling, especially in snakebite, enables more efficient treatment approaches. Finally, future perspectives for pain treatment concerning snakebite patients are discussed.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Francisco Assis Nogueira Júnior
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, São Paulo, Brazil.
| |
Collapse
|
5
|
Gutiérrez JM, Vargas M, Segura Á, Herrera M, Villalta M, Solano G, Sánchez A, Herrera C, León G. In Vitro Tests for Assessing the Neutralizing Ability of Snake Antivenoms: Toward the 3Rs Principles. Front Immunol 2021; 11:617429. [PMID: 33505403 PMCID: PMC7829219 DOI: 10.3389/fimmu.2020.617429] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
There is an urgent need to strengthen the implementation of the 3Rs principle (Replacement, Reduction and Refinement) in the use of experimental animals in toxinological research and in the assessment of the neutralizing efficacy of snake antivenoms. This is a challenging task owing to the inherent complexity of snake venoms. The state of the art on this topic is hereby reviewed, with emphasis on the studies in which a correlation has been observed between in vivo toxicity tests and in vitro surrogate assays, particularly in the study of lethal activity of venoms and its neutralization. Correlations have been described with some venoms-antivenoms when using: (a) enzyme immunoassays, (b) hemagglutination, (c) enzyme assays (proteinase, phospholipase A2), (d) in vitro coagulant effect on plasma, (e) cell culture assays for cytotoxicity, (f) functional assays for assessing neurotoxicity in vitro, (g) use of hens' eggs, and (h) antivenomics. Additionally, the routine introduction of analgesia in these assays and the design of more 'humane' protocols for the lethality test are being pursued. It is expected that the next years will witness a growing awareness of the relevance of the 3Rs principles in antivenom testing, and that new in vitro alternatives and more 'humane' experimental designs will emerge in this field.
Collapse
Affiliation(s)
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| |
Collapse
|
6
|
Inhibitory effects of Morus nigra L. (Moraceae) against local paw edema and mechanical hypernociception induced by Bothrops jararacussu snake venom in mice. Biomed Pharmacother 2019; 111:1046-1056. [DOI: 10.1016/j.biopha.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/25/2022] Open
|
7
|
Herrera C, Bolton F, Arias AS, Harrison RA, Gutiérrez JM. Analgesic effect of morphine and tramadol in standard toxicity assays in mice injected with venom of the snake Bothrops asper. Toxicon 2018; 154:35-41. [PMID: 30268394 DOI: 10.1016/j.toxicon.2018.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023]
Abstract
Routine laboratory animal tests necessary to assess the toxicity of snake venoms and the preclinical neutralizing ability of antivenoms and other inhibitory substances induce significant pain and distress. This has prompted initiatives to introduce the routine use of analgesia. In this study, the analgesic effect of morphine and tramadol was assessed in tests assessing the lethal, hemorrhagic, myotoxic and edema-forming activities of the venom of the viperid snake Bothrops asper. The Mouse Grimace Scale (MGS) and mouse-exploration activity were used to assess pain and its inhibition by the analgesics. Results demonstrate that tests assessing lethality and myotoxicity induce higher levels of pain than assays quantifying hemorrhagic and edema-forming activities. Our observations also indicate that pretreatment of mice with both analgesics, at the doses used, were similarly effective in reducing the MGS magnitude and increase mouse-exploration activity after the administration of B. asper venom. Moreover, the analgesic effect of both drugs was more evident in the myotoxic and lethality assays. Combined with previous observations showing that these analgesics do not alter the extent of toxic effects induced by B. asper venom, our results strongly indicate that the use of analgesia (using either morphine or tramadol) should be considered in the routine assessment of venom toxicity and antivenom efficacy.
Collapse
Affiliation(s)
- Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Fiona Bolton
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ana Silvia Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
8
|
Khaing EM, Hurtado PR, Hurtado E, Zaw A, White J, Warrell DA, Alfred S, Mahmood MA, Peh CA. Development of an ELISA assay to determine neutralising capacity of horse serum following immunisation with Daboia siamensis venom in Myanmar. Toxicon 2018; 151:163-168. [PMID: 30017790 DOI: 10.1016/j.toxicon.2018.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 11/26/2022]
Abstract
Snakebite envenoming is a serious problem in Myanmar. The great majority of snakebite in this country is due to Russell's Viper (Daboia siamensis). For many years, the Burma Pharmaceutical Industry has produced a monovalent antivenom to Russell's Viper in horses. At present, the only way of determining the level of antibody against D. siamensis venom in hyperimmune horse serum is to perform venom neutralisation tests in mice. In this study, we describe the development of an in vitro ELISA assay to estimate neutralising capacity of horse serum. We found a strong correlation between the ELISA assay and the venom neutralisation test in mice (r = 0.982). The assay is robust and has sufficient sensitivity (92%) and specificity (96%) to replace the venom neutralisation test in mice during the immunisation phase in horses.
Collapse
Affiliation(s)
| | - Plinio R Hurtado
- Royal Adelaide Hospital, South Australia, Australia; University of Adelaide, South Australia, Australia
| | | | - Aung Zaw
- Burma Pharmaceutical Industry, Yangon, Myanmar
| | - Julian White
- University of Adelaide, South Australia, Australia; Women's and Children's Hospital, South Australia, Australia
| | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Sam Alfred
- Royal Adelaide Hospital, South Australia, Australia
| | | | - Chen Au Peh
- Royal Adelaide Hospital, South Australia, Australia; University of Adelaide, South Australia, Australia.
| |
Collapse
|
9
|
Gutiérrez JM, Solano G, Pla D, Herrera M, Segura Á, Vargas M, Villalta M, Sánchez A, Sanz L, Lomonte B, León G, Calvete JJ. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins (Basel) 2017; 9:toxins9050163. [PMID: 28505100 PMCID: PMC5450711 DOI: 10.3390/toxins9050163] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023] Open
Abstract
Animal-derived antivenoms constitute the mainstay in the therapy of snakebite envenoming. The efficacy of antivenoms to neutralize toxicity of medically-relevant snake venoms has to be demonstrated through meticulous preclinical testing before their introduction into the clinical setting. The gold standard in the preclinical assessment and quality control of antivenoms is the neutralization of venom-induced lethality. In addition, depending on the pathophysiological profile of snake venoms, the neutralization of other toxic activities has to be evaluated, such as hemorrhagic, myotoxic, edema-forming, dermonecrotic, in vitro coagulant, and defibrinogenating effects. There is a need to develop laboratory assays to evaluate neutralization of other relevant venom activities. The concept of the 3Rs (Replacement, Reduction, and Refinement) in Toxinology is of utmost importance, and some advances have been performed in their implementation. A significant leap forward in the study of the immunological reactivity of antivenoms against venoms has been the development of “antivenomics”, which brings the analytical power of mass spectrometry to the evaluation of antivenoms. International partnerships are required to assess the preclinical efficacy of antivenoms against snake venoms in different regions of the world in order to have a detailed knowledge on the neutralizing profile of these immunotherapeutics.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Davinia Pla
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Sección de Química Analítica, Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain.
| |
Collapse
|
10
|
Li S, Hong Y, Jin X, Li X, Sun E, Zhang G, Lu L, Nie L. Agkistrodon acutus-purified protein C activator protects human umbilical vein endothelial cells against H 2O 2-induced apoptosis. PHARMACEUTICAL BIOLOGY 2016; 54:3285-3291. [PMID: 27572701 DOI: 10.1080/13880209.2016.1224259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/03/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Recent studies show that the Agkistrodon acutus (Viperidae) (syn. Deinagkistrodon acutus) protein C activator (PCA) treats acute myocardial infarction and ischaemia-reperfusion animal models effectively, while the underlying mechanism remains unknown. OBJECTIVE To study the effect of PCA on the injury of human umbilical vein endothelial cells (HUVECs) induced by H2O2 and the underlying mechanism. MATERIALS AND METHODS Primary cultured HUVECs were pretreated with PCA (20, 40 and 80 μg/mL) for 1 h, then HUVEC apoptosis was induced by 300 μmol/mL H2O2. Apoptosis was analyzed by AnnexinV-FITC/PI, and reactive oxygen species (ROS) level was tested by flow cytometry. Colorimetric methods were used to detect the levels of NO and IL-1. In addition, real-time PCR and western blot analyses were used to detect the expression of eNOS and phospho-p38/MAPK. RESULTS Morphological changes were induced by H2O2 in HUVECs. The cell survival rate was increased by 43.9, 64.0 and 80.6% in each PCA pretreated group (20, 40 and 80 μg/mL) compared to the model group. In each PCA pretreated group, oxidative stress level was also decreased to 54.7, 42.7 and 25.1%. Moreover, the level of IL-1 was decreased to 83.3, 62.2 and 30.7%. The level of NO was increased by 155.9, 232.4 and 317.6%. Apoptosis rate was decreased to 59.0, 47.7 and 32.7%. Phospho-p38 expression was downregulated, but eNOS expression was upregulated. DISCUSSION AND CONCLUSION The results suggest that PCA can effectively protect the endothelial cells from injury induced by H2O2, which may be associated with antioxidation, upregulation of eNOS and downregulation of p38-MAPK.
Collapse
Affiliation(s)
- Shu Li
- a Life Science College, Anhui Normal University , Wuhu , China
- b Department of Pathophysiology , Wannan Medical College , Wuhu , China
| | - Yun Hong
- c Department of Ultrasonography , Yijishan Hospital , Wuhu , China
| | - Xin Jin
- d Department of Basic Medicine , Wannan Medical College , Wuhu , China
| | - Xianwei Li
- d Department of Basic Medicine , Wannan Medical College , Wuhu , China
| | - Entao Sun
- d Department of Basic Medicine , Wannan Medical College , Wuhu , China
| | - Genbao Zhang
- b Department of Pathophysiology , Wannan Medical College , Wuhu , China
| | - Linming Lu
- d Department of Basic Medicine , Wannan Medical College , Wuhu , China
| | - Liuwang Nie
- a Life Science College, Anhui Normal University , Wuhu , China
| |
Collapse
|