1
|
Diniz-Sousa R, Silva CCA, Pereira SS, da Silva SL, Fernandes PA, Teixeira LMC, Zuliani JP, Soares AM. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int J Biol Macromol 2023; 238:124357. [PMID: 37028634 DOI: 10.1016/j.ijbiomac.2023.124357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil
| | - Cleópatra C A Silva
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil
| | - Soraya S Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Saulo L da Silva
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Faculty of Chemical Sciences, University of Cuenca, Cuenca, Azuay, Ecuador
| | - Pedro A Fernandes
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Luís M C Teixeira
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil; Faculdade Católica de Rondônia (FCR), Porto Velho, Rondônia, Brazil.
| |
Collapse
|
2
|
Sjakste N, Gajski G. A Review on Genotoxic and Genoprotective Effects of Biologically Active Compounds of Animal Origin. Toxins (Basel) 2023; 15:165. [PMID: 36828477 PMCID: PMC9961038 DOI: 10.3390/toxins15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Envenomation by animal venoms remains a serious medical and social problem, especially in tropical countries. On the other hand, animal venoms are widely used as a source of biologically active compounds for the development of novel drugs. Numerous derivatives of animal venoms are already used in clinical practice. When analysing the mechanisms of action of animal venoms, attention is usually focused on the main target of the venom's enzymes and peptides such as neurotoxic, cytotoxic or haemorrhagic effects. In the present review, we would like to draw attention to the "hidden" effects of animal venoms and their derivatives in regard to DNA damage and/or protection against DNA damage. Alkaloids and terpenoids isolated from sponges such as avarol, ingenamine G or variolin B manifest the capability to bind DNA in vitro and produce DNA breaks. Trabectidin, isolated from a sea squirt, also binds and damages DNA. A similar action is possible for peptides isolated from bee and wasp venoms such as mastoparan, melectin and melittin. However, DNA lesions produced by the crude venoms of jellyfish, scorpions, spiders and snakes arise as a consequence of cell membrane damage and the subsequent oxidative stress, whereas certain animal venoms or their components produce a genoprotective effect. Current research data point to the possibility of using animal venoms and their components in the development of various potential therapeutic agents; however, before their possible clinical use the route of injection, molecular target, mechanism of action, exact dosage, possible side effects and other fundamental parameters should be further investigated.
Collapse
Affiliation(s)
- Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, 1004 Riga, Latvia
- Genetics and Bioinformatics, Institute of Biology, University of Latvia, 1004 Riga, Latvia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Lafnoune A, Lee SY, Heo JY, Gourja I, Darkaoui B, Abdelkafi-Koubaa Z, Chgoury F, Daoudi K, Chakir S, Cadi R, Mounaji K, Srairi-Abid N, Marrakchi N, Shum D, Seo HR, Oukkache N. Anti-Cancer Effect of Moroccan Cobra Naja haje Venom and Its Fractions against Hepatocellular Carcinoma in 3D Cell Culture. Toxins (Basel) 2021; 13:toxins13060402. [PMID: 34199838 PMCID: PMC8229680 DOI: 10.3390/toxins13060402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer in adults, the fifth most common malignancy worldwide and the third leading cause of cancer related death. An alternative to the surgical treatments and drugs, such as sorafenib, commonly used in medicine is necessary to overcome this public health problem. In this study, we determine the anticancer effect on HCC of Moroccan cobra Naja haje venom and its fraction obtained by gel filtration chromatography against Huh7.5 cancer cell line. Cells were grown together with WI38 human fibroblast cells, LX2 human hepatic stellate cell line, and human endothelial cells (HUVEC) in MCTS (multi-cellular tumor spheroids) models. The hepatotoxicity of venom and its fractions were also evaluated using the normal hepatocytes cell line (Fa2N-4 cells). Our results showed that an anti HCC activity of Moroccan cobra Naja haje venom and, more specifically, the F7 fraction of gel filtration chromatography exhibited the greatest anti-hepatocellular carcinoma effect by decreasing the size of MCTS. This effect is associated with a low toxicity against normal hepatocytes. These results strongly suggest that the F7 fraction of Moroccan cobra Naja haje venom obtained by gel filtration chromatography possesses the ability to inhibit cancer cells proliferation. More research is needed to identify the specific molecule(s) responsible for the anticancer effect and investigate their mechanism of action.
Collapse
Affiliation(s)
- Ayoub Lafnoune
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Su-Yeon Lee
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (S.-Y.L.); (H.-R.S.)
| | - Jin-Yeong Heo
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (J.-Y.H.); (D.S.)
| | - Imane Gourja
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
| | - Bouchra Darkaoui
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Zaineb Abdelkafi-Koubaa
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - Fatima Chgoury
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
| | - Khadija Daoudi
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Salma Chakir
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
| | - Rachida Cadi
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Khadija Mounaji
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Najet Srairi-Abid
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (J.-Y.H.); (D.S.)
| | - Haeng-Ran Seo
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (S.-Y.L.); (H.-R.S.)
| | - Naoual Oukkache
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Correspondence:
| |
Collapse
|
4
|
Doltchinkova V, Stoylov S, Angelova PR. Viper toxins affect membrane characteristics of human erythrocytes. Biophys Chem 2020; 270:106532. [PMID: 33360945 DOI: 10.1016/j.bpc.2020.106532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Elucidating electrokinetic stability by which surface charges regulate toxins interaction with erythrocytes is crucial for understanding the cell functionality. Electrokinetic properties of human erythrocytes upon treatment of Vipoxin, phospholipase A2 (PLA2) and Vipoxin acidic component (VAC), isolated from Vipera ammodytes meridionalis venom were studied using particle microelectrophoresis. PLA2 and Vipoxin treatments alter the osmotic fragility of erythrocyte membranes. The increased stability of cells upon viper toxins is presented by the increased zeta potential of erythrocytes before sedimentation of cells during electric field applied preventing the aggregation of cells. Lipid peroxidation of low dose toxin-treated erythrocytes shows reduced LP products compared to untreated cells. The apparent proton efflux and conductivity assays are performed and the effectiveness PLA2 > Vipoxin>VAC is discussed. The reported results open perspectives to a further investigation of the electrokinetic properties of the membrane after viper toxins treatment to shed light on the molecular mechanisms driving the mechanisms of inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Virjinia Doltchinkova
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria.
| | - Stoyl Stoylov
- "Rostislaw Kaischew" Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
5
|
Bakardzhiev P, Toncheva-Moncheva N, Mladenova K, Petrova S, Videv P, Moskova-Doumanova V, Topouzova-Hristova T, Doumanov J, Rangelov S. Assembly of amphiphilic nucleic acid-polymer conjugates into complex superaggregates: Preparation, properties, and in vitro performance. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Miscibility of hBest1 and sphingomyelin in surface films - A prerequisite for interaction with membrane domains. Colloids Surf B Biointerfaces 2020; 189:110893. [PMID: 32113084 DOI: 10.1016/j.colsurfb.2020.110893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 01/07/2023]
Abstract
Human bestrophin-1 (hBest1) is a transmembrane Ca2+- dependent anion channel, associated with the transport of Cl-, HCO3- ions, γ-aminobutiric acid (GABA), glutamate (Glu), and regulation of retinal homeostasis. Its mutant forms cause retinal degenerative diseases, defined as Bestrophinopathies. Using both physicochemical - surface pressure/mean molecular area (π/A) isotherms, hysteresis, compressibility moduli of hBest1/sphingomyelin (SM) monolayers, Brewster angle microscopy (BAM) studies, and biological approaches - detergent membrane fractionation, Laurdan (6-dodecanoyl-N,N-dimethyl-2-naphthylamine) and immunofluorescence staining of stably transfected MDCK-hBest1 and MDCK II cells, we report: 1) Ca2+, Glu and GABA interact with binary hBest1/SM monolayers at 35 °C, resulting in changes in hBest1 surface conformation, structure, self-organization and surface dynamics. The process of mixing in hBest1/SM monolayers is spontaneous and the effect of protein on binary films was defined as "fluidizing", hindering the phase-transition of monolayer from liquid-expanded to intermediate (LE-M) state; 2) in stably transfected MDCK-hBest1 cells, bestrophin-1 was distributed between detergent resistant (DRM) and detergent-soluble membranes (DSM) - up to 30 % and 70 %, respectively; in alive cells, hBest1 was visualized in both liquid-ordered (Lo) and liquid-disordered (Ld) fractions, quantifying protein association up to 35 % and 65 % with Lo and Ld. Our results indicate that the spontaneous miscibility of hBest1 and SM is a prerequisite to diverse protein interactions with membrane domains, different structural conformations and biological functions.
Collapse
|
7
|
Action of Vipoxin and its separated components on monomolecular film of Dilauroylphosphatidylcholine at the air/water interface. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, on MDA-MB-231 breast cancer cells. Int J Biol Macromol 2018; 118:311-319. [DOI: 10.1016/j.ijbiomac.2018.06.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
|
9
|
Diniz-Sousa R, Caldeira CAS, Kayano AM, Paloschi MV, Pimenta DC, Simões-Silva R, Ferreira AS, Zanchi FB, Matos NB, Grabner FP, Calderon LA, Zuliani JP, Soares AM. Identification of the Molecular Determinants of the Antibacterial Activity of LmutTX, a Lys49 Phospholipase A2
Homologue Isolated from Lachesis muta muta
Snake Venom (Linnaeus, 1766). Basic Clin Pharmacol Toxicol 2017; 122:413-423. [DOI: 10.1111/bcpt.12921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Cleópatra A. S. Caldeira
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Anderson M. Kayano
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Mauro V. Paloschi
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Laboratory of Cellular Immunology Applied to Heath; Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | - Daniel. C. Pimenta
- Biochemistry and Biophysics Laboratory; Butantan Institute; Sao Paulo SP Brazil
| | - Rodrigo Simões-Silva
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Amália S. Ferreira
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Fernando B. Zanchi
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Najla B. Matos
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Microbiology Laboratory; Research Center on Tropical Medicine of Rondonia (CEPEM); Porto Velho RO Brazil
- Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | | | - Leonardo A. Calderon
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Juliana P. Zuliani
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
- Laboratory of Cellular Immunology Applied to Heath; Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | - Andreimar M. Soares
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
- Sao Lucas Universitary Center (UNISL); Porto Velho RO Brazil
| |
Collapse
|
10
|
Prinholato da Silva C, Costa TR, Paiva RMA, Cintra ACO, Menaldo DL, Antunes LMG, Sampaio SV. Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J Venom Anim Toxins Incl Trop Dis 2015; 21:44. [PMID: 26539212 PMCID: PMC4632473 DOI: 10.1186/s40409-015-0044-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background Phospholipases A2 (PLA2s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA2 isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines. Methods The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I. Results It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %). Conclusions These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Cássio Prinholato da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Tássia R Costa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Raquel M Alves Paiva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Adélia C O Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Danilo L Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Lusânia M Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Suely V Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| |
Collapse
|