1
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
VEGF/VEGFR-2 system exerts neuroprotection against Phoneutria nigriventer spider envenomation through PI3K-AKT-dependent pathway. Toxicon 2020; 185:76-90. [PMID: 32649934 DOI: 10.1016/j.toxicon.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, β-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, β-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.
Collapse
|
3
|
Xu J, Sun Y, Lu J. Knockdown of Long Noncoding RNA (lncRNA) AK094457 Relieved Angiotensin II Induced Vascular Endothelial Cell Injury. Med Sci Monit 2020; 26:e919854. [PMID: 32027625 PMCID: PMC7020760 DOI: 10.12659/msm.919854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Hypertension could induce many serious diseases, including damage to vascular endothelial cells. As a non-coding RNA, long noncoding RNA (lncRNA) has received much attention in scientific research and has a regulating efficacy on many critical life activities in human body. The level of lncRNA AK094457 is thought to be elevated in hypertensive rats. However, there is no research indicating the relationship between the level of lncRNA AK094457 and vascular endothelial injury. Material/Methods In our study, we used lentiviral to knockdown lncRNA AK094457, and the human umbilical vein endothelial cells (HUVECs) were stimulated by the Ang II to imitate the vascular endothelial cell damage caused by hypertension. The Cell Counting Kit-8 assays were used to detect the cells viability. Western blotting was performed to detect the endothelial nitric oxide synthase (eNOS), p-eNOS and endothelin-1 (ET-1). After that the production of the NO was monitored. At last, the reactive oxygen species (ROS) levels and apoptosis rates were detected in this study. Results According to the results, we found that knockdown lncRNA AK094457 could alleviate the decrease of vascular endothelial cell viability induced by angiotensin II (Ang II). The knockdown of lncRNA AK094457 also relieved the downregulation of eNOS and p-eNOS, and the decreasing of NO release. At the same time, the knockdown of lncRNA inhibited the levels of Ang II-induced proinflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1, and IL-6) and cell adhesion molecules (vascular cell adhesion molecule 1 [VCAM-1], intercellular adhesion molecule 1 [ICAM-1], and monocyte chemoattractant protein-1 [MCP-1]). The levels of ROS and apoptosis rates also decreased after the knockdown of lncRNA AK094457. Conclusions All these results indicated that lncRNA AK094457 could promote Ang II-induced vascular endothelial cell injury. On the contrary, knockdown of lncRNA AK094457 could alleviate this damage.
Collapse
Affiliation(s)
- JiaYi Xu
- Department of Gerontology, Minhang Hospital, Fudan University, Shanghai, China (mainland)
| | - Yingjie Sun
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai, China (mainland)
| | - Jie Lu
- Department of Gerontology, Minhang Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
4
|
Zhang S, Hu X, Guo S, Shi L, He Q, Zhang P, Yu S, Zhao R. Myricetin ameliorated ischemia/reperfusion-induced brain endothelial permeability by improvement of eNOS uncoupling and activation eNOS/NO. J Pharmacol Sci 2019; 140:62-72. [PMID: 31130510 DOI: 10.1016/j.jphs.2019.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) has been considered as a major pathological change in stroke. eNOS/NO play a key role in maintain BBB function. Myricetin is one of the common flavones widely exists in food and fruit, show certain protective effect on the brain function. This experiment establishes oxygeneglucose deprivation and reoxygenation (OGD/R) brain cell model. The regulated effects of Myricetin on BBB function, eNOS/NO and eNOS uncoupling were evaluated. To investigate the molecular mechanism, Akt and Nrf2 inhibitor were also used. The result showed that Myricetin could significantly decreased the enhancement of endothelial permeability and inflammation in OGD/R model, in addition regulated eNOS/NO pathway. The regulate effect in endothelial permeability and eNOS activity by Myricetin were both decreased when combined with Akt inhibitor or Nrf2 inhibitor, and was abrogated when combined with Akt and Nrf2 inhibitor simultaneously. The regulated effect on eNOS uncoupling by Myricetin were abrogated when combined with Nrf2 inhibitor, but not with Akt inhibitor. In conclusion, Myricetin showed significant protect effect on ischemia/reperfusion-induced brain endothelial permeability, and related to simultaneously regulated Akt pathway and improvement of eNOS uncoupling through Nrf2 pathway.
Collapse
Affiliation(s)
- Song Zhang
- Department of Pharmacy, Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Xuehui Hu
- Department of Nursing, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Shun Guo
- Department of Pharmacy, Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Lei Shi
- Department of Pharmacy, Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Qing He
- Department of Cardiovascular Surgery, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Ping Zhang
- Department of Cardiovascular Surgery, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - ShiQiang Yu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Rong Zhao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
PnTx2-6 (or δ-CNTX-Pn2a), a toxin from Phoneutria nigriventer spider venom, releases l-glutamate from rat brain synaptosomes involving Na+ and Ca2+ channels and changes protein expression at the blood-brain barrier. Toxicon 2018; 150:280-288. [DOI: 10.1016/j.toxicon.2018.06.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022]
|
6
|
Mesquita-Britto MHR, Mendonça MCP, Soares ES, Sakane KK, da Cruz-Höfling MA. Inhibition of VEGF-Flk-1 binding induced profound biochemical alteration in the hippocampus of a rat model of BBB breakdown by spider venom. A preliminary assessment using FT-IR spectroscopy. Neurochem Int 2018; 120:64-74. [PMID: 30075232 DOI: 10.1016/j.neuint.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
Abstract
Phoneutria nigriventer spider venom (PNV) contains ion channels-acting neuropeptides that in rat induces transitory blood-brain barrier breakdown (BBBb) in hippocampus in parallel with VEGF upregulation. We investigated whether VEGF has a neuroprotective role by inhibiting its binding to receptor Flk-1 by itraconazole (ITZ). FT-IR spectroscopy examined the biochemical status of hippocampus and evaluated BBBb in rats administered PNV or ITZ/PNV at periods with greatest toxicity (1-2h), recovery (5h) and visual absence of symptoms (24h), and compared to saline and ITZ controls. The antifungal treatment before venom intoxication aggravated the venom effects and increased BBB damage. FT-IR spectra of venom, hippocampi of controls, PNV and ITZ-PNV showed a 1400 cm-1 band linked to symmetric stretch of carboxylate and 1467 cm-1 band (CH2 bending: mainly lipids) that were considered biomarker and reference bands, respectively. Inhibition of VEGF/Flk-1 binding produced marked changes in lipid/protein stability at 1-2h. The largest differences were observed in spectra regions assigned to lipids, both symmetric (2852 cm-1) and asymmetric (2924 and 2968 cm-1). Quantitative analyses showed greatest increases in the 1400 cm-1/1467 cm-1 ratio also at 1h. Such changes at period of rats' severe intoxication referred to wavenumber region from 3106 cm-1 to 687 cm-1 assigning for C-H and N-H stretching of protein, Amide I, C=N cytosine, N-H adenine, Amide II, CH2 bending: mainly lipids, C-O stretch: glycogen, polysaccharides, glycolipids, z-type DNA, C-C, C-O and CH out-of-plane bending vibrations. We conclude that VEGF has a neuroprotective role and can be a therapeutic target in PNV envenomation. FT-IR spectroscopy showed to be instrumental for monitoring biochemical changes in this model of P. nigriventer venom-induced BBB disruption.
Collapse
Affiliation(s)
- Maria Helena Rodrigues Mesquita-Britto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Monique Culturato Padilha Mendonça
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edilene Siqueira Soares
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Kumiko Koibuchi Sakane
- Institute for Research and Development, University of Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Soares ES, Stávale LM, Mendonça MCP, Coope A, Cruz-Höfling MAD. Age-Related Modulations of AQP4 and Caveolin-1 in the Hippocampus Predispose the Toxic Effect of Phoneutria nigriventer Spider Venom. Int J Mol Sci 2016; 17:ijms17111462. [PMID: 27886057 PMCID: PMC5133769 DOI: 10.3390/ijms17111462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 11/16/2022] Open
Abstract
We have previously demonstrated that Phoneutria nigriventer venom (PNV) causes blood–brain barrier (BBB) breakdown, swelling of astrocytes end-feet and fluid permeation into brain interstitium in rats. Caveolae and water channels respond to BBB alterations by co-participation in shear stress response and edema formation/resolution. Herein, we showed post-natal developmental-related changes of two BBB-associated transporter proteins: the endothelial caveolin-1 (Cav-1), the major scaffolding protein from caveolae frame, and the astroglial aquaporin-4 (AQP4), the main water channel protein expressed in astrocytic peri-vascular end-feet processes, in the hippocampus of rats intraperitoneally-administered PNV. Western blotting protein levels; immunohistochemistry (IHC) protein distribution in CA1, CA2, and CA3 subfields; and gene expression by Real Time-Polymerase Chain Reaction (qPCR) were assessed in post-natal Day 14 (P14) and 8–10-week-old rats over critical periods of envenomation. The intensity and duration of the toxic manifestations indicate P14 neonate rats more vulnerable to PNV than adults. Histologically, the capillaries of P14 and 8–10-week-old rats treated with PNV showed perivascular edema, while controls did not. The intensity of the toxic manifestations in P14 decreases temporally (2 > 5 > 24 h), while inversely the expression of AQP4 and Cav-1 peaked at 24 h when clinically PNV-treated animals do not differ from saline controls. IHC of AQP4 revealed that hippocampal CA1 showed the least expression at 2 h when toxic manifestation was maximal. Subfield IHC quantification revealed that in P14 rats Cav-1 peaked at 24 h when toxic manifestations were absent, whereas in 8–10-week-old rats Cav-1 peaked at 2 h when toxic signs were highest, and progressively attenuated such increases until 24 h, remaining though significantly above baseline. Considering astrocyte-endothelial physical and functional interactions, we hypothesize that age-related modulations of AQP4 and Cav-1 might be linked both to changes in functional properties of astrocytes during post-natal development and in the BBB breakdown induced by the venom of P. nigriventer.
Collapse
Affiliation(s)
- Edilene S Soares
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, SP 13083-863, Brazil.
| | - Leila M Stávale
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, SP 13083-863, Brazil.
| | - Monique C P Mendonça
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, SP 13083-863, Brazil.
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP 13083-887, Brazil.
| | - Andressa Coope
- Laboratory of Cell Signaling, Faculty of Medical Sciences, State University of Campinas, Campinas, SP 13083-887, Brazil.
| | - Maria Alice da Cruz-Höfling
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, SP 13083-863, Brazil.
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP 13083-887, Brazil.
| |
Collapse
|
8
|
Soares ES, Mendonça MCP, da Cruz-Höfling MA. Caveolae as a target for Phoneutria nigriventer spider venom. Neurotoxicology 2016; 54:111-118. [DOI: 10.1016/j.neuro.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
|
9
|
Soares ES, Mendonça MCP, Rocha T, Kalapothakis E, da Cruz-Höfling MA. Are Synchronized Changes in Connexin-43 and Caveolin-3 a Bystander Effect in a Phoneutria nigriventer Venom Model of Blood-Brain Barrier Breakdown? J Mol Neurosci 2016; 59:452-63. [PMID: 27067308 DOI: 10.1007/s12031-016-0749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022]
Abstract
Upregulation of caveolin-3 (Cav-3) or connexin-43 (Cx43) in astrocytes has been associated with important brain pathologies. We used Phoneutria nigriventer spider venom (PNV), which induces blood-brain barrier breakdown in rats, in order to investigate Cav-3 and Cx43 expression in the cerebellum over critical periods of rat envenomation. By immunofluorescence, western blotting (WB), and transmission electron microscopy (TEM), we assessed changes at 1, 2, 5, 24, and 72 h post-venom. WB showed immediate increases in Cav-3 and Cx43 at 1 h (interval of greatest manifestations of envenomation) that persisted at 5 h (when there were signs of recovery) and peaked at 24 h when no signs of envenomation were detectable. At 2 and 72 h, Cav-3 was downregulated and Cx43 had returned to baseline. PNV markedly intensified Cx43 in molecular, Purkinje and granular layers and Cav-3 in astrocytes whose colocalization to increased GFAP suggests interaction between reactive astrogliosis and Cav-3 upregulation. TEM showed swollen perivascular astrocytic end-feet and synaptic contact alterations that had generally resolved by 72 h. It is uncertain whether such PNV-induced synchronized changes are an interactive effect between Cav-3 and Cx43, or a bystander effect. Evidences indicate that Cav-3 downregulation coupled to Cx43 return to baseline at 72 h when no signs of envenomation were visible, suggesting homeostasis reestablishment. This experimental model is relevant to studying mechanisms involved in neurological disorders associated with Cav-3 overexpression.
Collapse
Affiliation(s)
- Edilene Siqueira Soares
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Monique Culturato Padilha Mendonça
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Thalita Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.,Multidisciplinary Research Laboratory, São Francisco University (USF), Bragança Paulista, SP, Brazil
| | - Evanguedes Kalapothakis
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil. .,Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|