1
|
Li R, Zhu L, Yang M, Liu A, Xu W, He P. Silver nanocluster-based aptasensor for the label-free and enzyme-free detection of ochratoxin A. Food Chem 2024; 431:137126. [PMID: 37579613 DOI: 10.1016/j.foodchem.2023.137126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Mycotoxin contamination in cereal is a global concern, threatening food safety and human health, necessitating the development of rapid on-site methods. Here, a label- and enzyme-free biosensor was developed based on aptamer-regulated DNA-silver nanoclusters (AgNCs) for rapid detection of ochratoxin A (OTA). A novel DNA-templated AgNCs emitting strong red fluorescence was designed and synthesized in this study. The partial sequence of the DNA template was selected from the complementary OTA aptamer (Apt-OTA) sequence, which can quench fluorescence from the AgNCs via hybridization in the absence of OTA. In the presence of OTA, the high OTA-Aptamer affinity prevented the Apt-OTA from quenching the AgNCs, resulting in "turn on" of the fluorescence. This biosensor eliminated the use of costly reagents, complex pretreatments, and sophisticated equipment, which could realize the point-of-care testing (POCT) of OTA with a limit of detection (LOD) of 1.3 nM and a detection time of 45 min.
Collapse
Affiliation(s)
- Runxian Li
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Min Yang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Anguo Liu
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Ren Y, Tian R, Wang T, Cao J, Li J, Deng A. An Extremely Highly Sensitive ELISA in pg mL -1 Level Based on a Newly Produced Monoclonal Antibody for the Detection of Ochratoxin A in Food Samples. Molecules 2023; 28:5743. [PMID: 37570711 PMCID: PMC10420233 DOI: 10.3390/molecules28155743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, an extremely highly sensitive enzyme-linked immunosorbent assay (ELISA) based on a newly produced monoclonal antibody (mAb) for the detection of ochratoxin A (OTA) in food samples was developed. OTA-Bovine serum albumin (BSA) conjugate was prepared and used as the immunogen for the production of the mAb. Among four hybridoma clones (8B10, 5C2, 9B7, and 5E11), the antibody from 8B10 displayed the highest affinity recognition for OTA. Based on the mAb (8B10), the IC50 and LOD of the ELISA for OTA were 34.8 pg mL-1 and 1.5 pg mL-1, respectively, which was 1.53~147 times lower than those in published ELISAs, indicating the ultra-sensitivity of our assay. There was no cross-reactivity of the mAb with the other four mycotoxins (AFB1, ZEN, DON, and T-2). Due to the high similarity in molecular structures among OTA, ochratoxin B (OTB), and ochratoxin C (OTC), the CR values of the mAb with OTB and OTC were 96.67% and 22.02%, respectively. Taking this advantage, the ELISA may be able to evaluate total ochratoxin levels in food samples. The recoveries of the ELISA for OTA in spiked samples (corn, wheat, and feed) were 96.5-110.8%, 89.5-94.4%, and 91.8-113.3%; and the RSDs were 5.2-13.6%, 8.2-13.0%, and 7.7-13.7% (n = 3), respectively. The spiked food samples (corn) were measured by ELISA and HPLC-FLD simultaneously. A good correlation between ELISA (x) and HPLC-FLD (y) with the linear regression equation of y = 0.918x - 0.034 (R2 = 0.985, n = 5) was obtained. These results demonstrated that the newly produced mAb-based ELISA was a feasible and ultra-sensitive analytical method for the detection of OTA in food samples.
Collapse
Affiliation(s)
| | | | | | | | - Jianguo Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (Y.R.); (R.T.); (T.W.); (J.C.)
| | - Anping Deng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (Y.R.); (R.T.); (T.W.); (J.C.)
| |
Collapse
|
3
|
Guo M, zhang J, Lv J, Ke T, Tian J, Miao K, Wang Y, Kong D, Ruan H, Luo J, Yang M. Development of broad-specific monoclonal antibody-based immunoassays for simultaneous ochratoxin screening in medicinal and edible herbs. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Chen W, Zhang X, Zhang Q, Zhang G, Wu S, Yang H, Zhou Y. Cerium ions triggered dual-readout immunoassay based on aggregation induced emission effect and 3,3′,5,5′-tetramethylbenzidine for fluorescent and colorimetric detection of ochratoxin A. Anal Chim Acta 2022; 1231:340445. [DOI: 10.1016/j.aca.2022.340445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
|
5
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Gao XY, Xu CM, Zhang XK, Li MR, Gong XM, Yang HM, Tang JB. Development of Fc-specific multi-biotinylated antibodies via photoreactive tandem AviTag repeats for the ultrasensitive determination of ochratoxin A. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
López-Puertollano D, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A. Immunoanalytical methods for ochratoxin A monitoring in wine and must based on innovative immunoreagents. Food Chem 2020; 345:128828. [PMID: 33338836 DOI: 10.1016/j.foodchem.2020.128828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Immunochemical methods are highly deployed in analytical laboratories worldwide for monitoring the incidence of mycotoxins in the food chain. Nevertheless, most conventional immunoassays for ochratoxin A (OTA), including commercial kits, show limitations to robustly determine this mycotoxin in grape-derived products below regulated levels (2 ng/mL). Herein, two rapid tests for sensitive OTA determination in wine and must were developed capitalizing on a collection of bioconjugates from innovative synthetic haptens and monoclonal antibodies with subnanomolar affinity. The ELISA (LOD = 8 pg/mL) showed excellent performance in recovery studies, and it was applied to survey commercial wines and musts for OTA contamination. Concerning LFIA, validation according to the Commission Regulation 519/2014 showed that samples exceeding 2 ng/mL were properly scored as uncompliant. More importantly, illegal samples provided a complete inhibition of the test signal, making this test an easy-to-use, rapid, and convenient screening method for in-house control of OTA in wineries.
Collapse
Affiliation(s)
- Daniel López-Puertollano
- Department of Organic Chemistry, Universitat de València, Doctor Moliner 50, 46100 Burjassot, València, Spain
| | - Consuelo Agulló
- Department of Organic Chemistry, Universitat de València, Doctor Moliner 50, 46100 Burjassot, València, Spain
| | - Josep V Mercader
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980 Paterna, València, Spain
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, Universitat de València, Doctor Moliner 50, 46100 Burjassot, València, Spain
| | - Antonio Abad-Fuentes
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980 Paterna, València, Spain.
| |
Collapse
|
8
|
Ling S, Li X, Zhao Q, Wang R, Tan T, Wang S. Preparation of monoclonal antibody against penicillic acid (PA) and its application in the immunological detection. Food Chem 2020; 319:126505. [DOI: 10.1016/j.foodchem.2020.126505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
|
9
|
Arshavsky-Graham S, Urmann K, Salama R, Massad-Ivanir N, Walter JG, Scheper T, Segal E. Aptamers vs. antibodies as capture probes in optical porous silicon biosensors. Analyst 2020; 145:4991-5003. [PMID: 32519701 DOI: 10.1039/d0an00178c] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade aptamers have emerged as a promising class of bioreceptors for biosensing applications with significant advantages over conventional antibodies. However, experimental studies comparing aptasensors and immunosensors, under equivalent conditions, are limited and the results are inconclusive, in terms of benefits and limitations of each bioreceptor type. In the present work, the performance of aptamer and antibody bioreceptors for the detection of a his-tagged protein, used as a model target, is compared. The bioreceptors are immobilized onto a nanostructured porous silicon (PSi) thin film, used as the optical transducer, and the target protein is detected in a real-time and label-free format by reflective interferometric Fourier transform spectroscopy. For the antibodies, random-oriented immobilization onto the PSi nanostructure results in a poor biosensing performance. Contrary, Fc-oriented immobilization of the antibodies shows a similar biosensing performance to that exhibited by the aptamer-based biosensor, in terms of binding rate, dynamic detection range, limit of detection and selectivity. The aptasensor outperforms in terms of its reusability and storability, while the immunosensor could not be regenerated for subsequent experiments.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Fadlalla MH, Ling S, Wang R, Li X, Yuan J, Xiao S, Wang K, Tang S, Elsir H, Wang S. Development of ELISA and Lateral Flow Immunoassays for Ochratoxins (OTA and OTB) Detection Based on Monoclonal Antibody. Front Cell Infect Microbiol 2020; 10:80. [PMID: 32211342 PMCID: PMC7067699 DOI: 10.3389/fcimb.2020.00080] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Ochratoxins were important secondary metabolites secreted by fungi, and OTA and OTB are mainly significant mycotoxin, having toxic effects on humans and animals. Therefore, it is important to establish a rapid, sensitive, and precise method for ochratoxins detection and quantification in real samples. In this study, a stable monoclonal antibody (mAb) that recognizing both OTA and OTB toxins was employed for the establishment of indirect competitive ELISA (ic-ELISA), colloidal gold nanoparticles (CGNs), and nanoflowers gold strips (AuNFs) for detection of ochratoxins in real samples. A 6E5 hybridoma cell line stable secreting mAb against both OTA and OTB toxins was obtained by fusion of splenocytes with myeloma SP2/0 cells. The 6E5 mAb had a high affinity (3.7 × 108 L/mol) to OTA, and also showed similar binding activity to OTB. The optimized ic-ELISA resulted in a linear range of 0.06–0.6 ng/mL for ochratoxins (OTA and OTB) detection. The IC50 was 0.2 ng/mL and the limit of detection (LOD) was 0.03 ng/mL. The mean recovery rate from the spiked samples was 89.315 ± 2.257%, with a coefficient variation of 2.182%. The result from lateral flow immunoassays indicated that the LOD of CGNs and AuNFs were 5 and 1 μg/mL, respectively. All these results indicated that the developed ic-ELISA, CGNs, and AuNFs in this study could be used for the analysis of the residual of ochratoxins (OTA and OTB) in food and agricultural products.
Collapse
Affiliation(s)
- Mohamed Hassan Fadlalla
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sumei Ling
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongzhi Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiulan Li
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiwei Xiao
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqin Tang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hoyda Elsir
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Zhang X, He K, Fang Y, Cao T, Paudyal N, Zhang XF, Song HH, Li XL, Fang WH. Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat, and feed samples. J Zhejiang Univ Sci B 2019; 19:871-883. [PMID: 30387337 DOI: 10.1631/jzus.b1800085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A one-step dual flow immunochromatographic assay (DICGA), based on a competitive format, was developed for simultaneous quantification of ochratoxin A (OTA) and zearalenone (ZEN) in corn, wheat, and feed samples. The limit of detection for OTA was 0.32 ng/ml with a detection range of 0.53‒12.16 ng/ml, while for ZEN it was 0.58 ng/ml with a detection range of 1.06‒39.72 ng/ml. The recovery rates in corn, wheat, and feed samples ranged from 77.3% to 106.3% with the coefficient of variation lower than 15%. Naturally contaminated corn, wheat, and feed samples were analyzed using both DICGA and liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the correlation between the two methods was evaluated using a regression analysis. The DICGA method shows great potential for simple, rapid, sensitive, and cost-effective quantitative detection of OTA and ZEN in food safety control.
Collapse
Affiliation(s)
- Xian Zhang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.,Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Ke He
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China
| | - Yun Fang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310012, China
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Narayan Paudyal
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Xiao-Feng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310012, China
| | - Hou-Hui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China
| | - Xiao-Liang Li
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Wei-Huan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.,Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
12
|
Zhang X, Wang Z, Fang Y, Sun R, Cao T, Paudyal N, Fang W, Song H. Antibody Microarray Immunoassay for Simultaneous Quantification of Multiple Mycotoxins in Corn Samples. Toxins (Basel) 2018; 10:toxins10100415. [PMID: 30326616 PMCID: PMC6215206 DOI: 10.3390/toxins10100415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022] Open
Abstract
We developed and tested a prototype of an antibody microarray immunoassay for simultaneous quantitative detection of four typical mycotoxins (aflatoxin B₁, ochratoxin A, zearalenone, and fumonisin B₁) in corn samples. The test kit consisted of a nitrocellulose membrane layered with immobilized monoclonal antibodies against mycotoxins. During the assay, the mycotoxin-protein conjugates were biotinylated. The signal detection was enhanced by a combination of the biotin-streptavidin system and enhanced chemiluminescence (ECL). This improved the sensitivity of the assay. Under the optimized conditions, four calibration curves with goodness of fit (R² > 0.98) were plotted. The results showed that the detection limits for aflatoxin B₁, ochratoxin A, zearalenone, and fumonisin B₁ were 0.21, 0.19, 0.09, and 0.24 ng/mL, with detection ranges of 0.47⁻55.69, 0.48⁻127.11, 0.22⁻31.36, and 0.56⁻92.57 ng/mL, respectively. The limit of detection (LOD) of this antibody microarray for aflatoxin B₁, ochratoxin A, zearalenone, and fumonisin B₁ in corn was 5.25, 4.75, 2.25, and 6 μg/kg, respectively. The recovery rates from the spiked samples were between 79.2% and 113.4%, with coefficient of variation <10%. The results of the analysis of commercial samples for mycotoxins using this new assay and the liquid chromatography-tandem mass spectrometry (LC-MS/MS) were comparable and in good agreement. This assay could also be modified for the simultaneous detection of other multiple mycotoxins, as well as low-weight analytes, hazardous to human health.
Collapse
Affiliation(s)
- Xian Zhang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Zuohuan Wang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Yun Fang
- Technic Center of Zhejiang Entry-Exit Inspection and Quarantine Bureau, 126 Fuchun Road, Hangzhou 310012, Zhejiang, China.
| | - Renjie Sun
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Narayan Paudyal
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
| |
Collapse
|
13
|
Wang Y, Ning G, Bi H, Wu Y, Liu G, Zhao Y. A novel ratiometric electrochemical assay for ochratoxin A coupling Au nanoparticles decorated MoS2 nanosheets with aptamer. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Zhang X, Wang Z, Xie H, Sun R, Cao T, Paudyal N, Fang W, Song H. Development of a Magnetic Nanoparticles-Based Screen-Printed Electrodes (MNPs-SPEs) Biosensor for the Quantification of Ochratoxin A in Cereal and Feed Samples. Toxins (Basel) 2018; 10:toxins10080317. [PMID: 30082606 PMCID: PMC6115714 DOI: 10.3390/toxins10080317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
A rapid and sensitive electrochemical biosensor based on magnetic nanoparticles and screen-printed electrodes (MNPs-SPEs sensor) was developed for the detection of ochratoxin A (OTA) in cereal and feed samples. Different types of magnetic nanoparticles-based ELISA (MNPs-ELISA) were optimized, and the signal detection, as well as sensitivity, was enhanced by the combined use of screen-printed electrodes (SPEs). Under the optimized conditions, the calibration curve of the MNPs-SPEs sensor was y = 0.3372x + 0.8324 (R2 = 0.9805). The linear range of detection and the detection limit were 0.01–0.82 ng/mL and 0.007 ng/mL, respectively. In addition, 50% inhibition (IC50) was detectable at 0.10 ng/mL. The limit of detection (LOD) of this MNPs-SPEs sensor in cereal and feed samples was 0.28 μg/kg. The recovery rates in spiked samples were between 78.7% and 113.5%, and the relative standard deviations (RSDs) were 3.6–9.8%, with the coefficient of variation lower than 15%. Parallel analysis of commercial samples (corn, wheat, and feedstuff) showed a good correlation between MNPs-SPEs sensor and liquid chromatography tandem mass spectrometry (LC/MS-MS). This new method provides a rapid, highly sensitive, and less time-consuming method to determine levels of ochratoxin A in cereal and feedstuff samples.
Collapse
Affiliation(s)
- Xian Zhang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Zuohuan Wang
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Hui Xie
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| | - Renjie Sun
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Narayan Paudyal
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.
| |
Collapse
|
15
|
López-Puertollano D, Mercader JV, Agulló C, Abad-Somovilla A, Abad-Fuentes A. Novel haptens and monoclonal antibodies with subnanomolar affinity for a classical analytical target, ochratoxin A. Sci Rep 2018; 8:9761. [PMID: 29950703 PMCID: PMC6021394 DOI: 10.1038/s41598-018-28138-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/18/2018] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A is a potent toxic fungal metabolite whose undesirable presence in food commodities constitutes a problem of public health, so it is strictly regulated and controlled. For the first time, two derivatives of ochratoxin A (OTAb and OTAd) functionalized through positions other than the native carboxyl group of the mycotoxin, have been synthesized in order to better mimic, during the immunization process, the steric and conformational properties of the target analyte. Additionally, two conventional haptens making use of that native carboxyl group for protein coupling (OTAe and OTAf) were also prepared as controls for the purpose of comparison. The immunological performance in rabbits of protein conjugates based on OTAb and OTAd overcome that of conjugates employing OTAe and OTAf as haptens. After immunization of mice with OTAb and OTAd conjugates, a collection of high-affinity monoclonal antibodies to ochratoxin A was generated. In particular, one of those antibodies, the so-called OTAb#311, is very likely the best antibody produced so far in terms of selectivity and affinity to ochratoxin A.
Collapse
Affiliation(s)
- Daniel López-Puertollano
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Josep V Mercader
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980, Paterna, Valencia, Spain
| | - Consuelo Agulló
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Antonio Abad-Fuentes
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
16
|
Schubert M, Spiegel H, Schillberg S, Nölke G. Aspergillus-specific antibodies - Targets and applications. Biotechnol Adv 2018; 36:1167-1184. [PMID: 29608951 DOI: 10.1016/j.biotechadv.2018.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Aspergillus is a fungal genus comprising several hundred species, many of which can damage the health of plants, animals and humans by direct infection and/or due to the production of toxic secondary metabolites known as mycotoxins. Aspergillus-specific antibodies have been generated against polypeptides, polysaccharides and secondary metabolites found in the cell wall or secretions, and these can be used to detect and monitor infections or to quantify mycotoxin contamination in food and feed. However, most Aspergillus-specific antibodies are generated against heterogeneous antigen preparations and the specific target remains unknown. Target identification is important because this can help to characterize fungal morphology, confirm host penetration by opportunistic pathogens, detect specific disease-related biomarkers, identify new candidate targets for antifungal drug design, and qualify antibodies for diagnostic and therapeutic applications. In this review, we discuss how antibodies are raised against heterogeneous Aspergillus antigen preparations and how they can be characterized, focusing on strategies to identify their specific antigens and epitopes. We also discuss the therapeutic, diagnostic and biotechnological applications of Aspergillus-specific antibodies.
Collapse
Affiliation(s)
- Max Schubert
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; Justus-Liebig University Giessen, Institute for Phytopathology and Applied Zoology, Phytopathology Department, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| |
Collapse
|
17
|
Thyparambil AA, Bazin I, Guiseppi-Elie A. Molecular Modeling and Simulation Tools in the Development of Peptide-Based Biosensors for Mycotoxin Detection: Example of Ochratoxin. Toxins (Basel) 2017. [PMCID: PMC5744115 DOI: 10.3390/toxins9120395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycotoxin contamination of food and feed is now ubiquitous. Exposures to mycotoxin via contact or ingestion can potentially induce adverse health outcomes. Affordable mycotoxin-monitoring systems are highly desired but are limited by (a) the reliance on technically challenging and costly molecular recognition by immuno-capture technologies; and (b) the lack of predictive tools for directing the optimization of alternative molecular recognition modalities. Our group has been exploring the development of ochratoxin detection and monitoring systems using the peptide NFO4 as the molecular recognition receptor in fluorescence, electrochemical and multimodal biosensors. Using ochratoxin as the model mycotoxin, we share our perspective on addressing the technical challenges involved in biosensor fabrication, namely: (a) peptide receptor design; and (b) performance evaluation. Subsequently, the scope and utility of molecular modeling and simulation (MMS) approaches to address the above challenges are described. Informed and enabled by phage display, the subsequent application of MMS approaches can rationally guide subsequent biomolecular engineering of peptide receptors, including bioconjugation and bioimmobilization approaches to be used in the fabrication of peptide biosensors. MMS approaches thus have the potential to reduce biosensor development cost, extend product life cycle, and facilitate multi-analyte detection of mycotoxins, each of which positively contributes to the overall affordability of mycotoxin biosensor monitoring systems.
Collapse
Affiliation(s)
- Aby A. Thyparambil
- Center for Bioelectronics, Biosensors and Biochips (C3B), Texas A&M University, College Station, TX 77843, USA;
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ingrid Bazin
- Laboratoire de Génie de l’Environnement Industriel( LGEI), Institut Mines Telecom (IMT) Mines Ales, University of Montpellier, 30100 Ales, France;
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Texas A&M University, College Station, TX 77843, USA;
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA
- Correspondence: ; Tel.: +1-979-458-1239; Fax: +1-979-458-8219
| |
Collapse
|
18
|
Oplatowska-Stachowiak M, Kleintjens T, Sajic N, Haasnoot W, Campbell K, Elliott CT, Salden M. T-2 Toxin/HT-2 Toxin and Ochratoxin A ELISAs Development and In-House Validation in Food in Accordance with the Commission Regulation (EU) No 519/2014. Toxins (Basel) 2017; 9:E388. [PMID: 29189752 PMCID: PMC5744108 DOI: 10.3390/toxins9120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
T-2 toxin/HT-2 toxin (T-2/HT-2) and ochratoxin A (OTA) are mycotoxins that can contaminate a variety of agricultural commodities. To protect consumers' health, indicative limits for T-2/HT-2 and maximum limits for OTA have been set by the European Commission, requiring food business operators and controlling agencies to conduct routine checks for the presence of these harmful contaminants. Screening methods are increasingly used for monitoring purposes. Due to the demand for new and improved screening tools, two individual detection methods, T-2/HT-2 and OTA enzyme-linked immunosorbent assays (ELISAs), were developed in this study. The T-2/HT-2 ELISA was based on a T-2 monoclonal antibody with an IC50 (50% inhibitory concentration) of 0.28 ng/mL and 125% cross-reactivity with HT-2. As regards the OTA ELISA, a new sensitive monoclonal antibody specific to OTA with an IC50 of 0.13 ng/mL was produced. Both developed ELISA tests were then validated in agricultural commodities in accordance with the new performance criteria guidelines for the validation of screening methods for mycotoxins included in Commission Regulation (EU) No 519/2014. The T-2/HT-2 ELISA was demonstrated to be suitable for the detection of T-2/HT-2 in cereals and baby food at and above the screening target concentration (STC) of 12.5 μg/kg and 7.5 μg/kg, respectively. The OTA ELISA was shown to be applicable for the detection of OTA in cereals, coffee, cocoa and wine at and above the STC of 2 μg/kg, 2.5 μg/kg, 2.5 μg/kg and 0.4 ng/mL, respectively. The accuracy of both ELISAs was further confirmed by analysing proficiency test and reference samples. The developed methods can be used for sensitive and high-throughput screening for the presence of T-2/HT-2 and OTA in agricultural commodities.
Collapse
Affiliation(s)
| | | | - Nermin Sajic
- EuroProxima B.V., Arnhem 6827 BN, The Netherlands.
| | | | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5BN, UK.
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5BN, UK.
| | | |
Collapse
|
19
|
Zhang Y, Wang L, Shen X, Wei X, Huang X, Liu Y, Sun X, Wang Z, Sun Y, Xu Z, Eremin SA, Lei H. Broad-Specificity Immunoassay for Simultaneous Detection of Ochratoxins A, B, and C in Millet and Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4830-4838. [PMID: 28535353 DOI: 10.1021/acs.jafc.7b00770] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ochratoxins A, B, and C (OTA, OTB, and OTC) can be found in cereals and feeds; the simultaneous detection of these ochratoxins holds a great need in food safety. In this study, four antibodies raised from two ochrotoxin haptens and two coating antigens were compared, and then a sensitive and broad-specificity enzyme-linked immunosorbent assay (ELISA) was established for the simultaneous determination of three ochratoxins, where the detection limits were 0.005, 0.001, and 0.001 ng/mL for OTA, OTB, and OTC, respectively, and recoveries of three ochratoxins were between 84.3% and 111.7%. This developed method had been successfully applied to detect ochratoxins in both millet and maize. Molecular modeling revealed that the broad-specificity was related with the chlorine electronegativity on OTA and OTC and the potential of the acetyl ester group on OTC. The proposed ELISA can be used for simultaneous detection of three ochratoxins.
Collapse
Affiliation(s)
| | | | | | | | - Xinan Huang
- Tropical Medicine Institute & South China Chinese Medicine Collaborative Innovation Center, Guangzhou University of Chinese Medicine , Guangzhou 510405, China
| | | | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University , Beijing 100094, China
| | | | | | - Sergei A Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University , Leninskie gory 1, Building 3, Moscow 119991, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow 119071, Russia
| | | |
Collapse
|
20
|
Tullila A, Nevanen TK. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries. Int J Mol Sci 2017; 18:ijms18061169. [PMID: 28561803 PMCID: PMC5485993 DOI: 10.3390/ijms18061169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022] Open
Abstract
Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library.
Collapse
Affiliation(s)
- Antti Tullila
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland.
| | - Tarja K Nevanen
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland.
| |
Collapse
|
21
|
Evaluation of Ochratoxin Recognition by Peptides Using Explicit Solvent Molecular Dynamics. Toxins (Basel) 2017; 9:toxins9050164. [PMID: 28505090 PMCID: PMC5450712 DOI: 10.3390/toxins9050164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/09/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Biosensing platforms based on peptide recognition provide a cost-effective and stable alternative to antibody-based capture and discrimination of ochratoxin-A (OTA) vs. ochratoxin-B (OTB) in monitoring bioassays. Attempts to engineer peptides with improved recognition efficacy require thorough structural and thermodynamic characterization of the binding-competent conformations. Classical molecular dynamics (MD) approaches alone do not provide a thorough assessment of a peptide's recognition efficacy. In this study, in-solution binding properties of four different peptides, a hexamer (SNLHPK), an octamer (CSIVEDGK), NFO4 (VYMNRKYYKCCK), and a 13-mer (GPAGIDGPAGIRC), which were previously generated for OTA-specific recognition, were evaluated using an advanced MD simulation approach involving accelerated configurational search and predictive modeling. Peptide configurations relevant to ochratoxin binding were initially generated using biased exchange metadynamics and the dynamic properties associated with the in-solution peptide-ochratoxin binding were derived from Markov State Models. Among the various peptides, NFO4 shows superior in-solution OTA sensing and also shows superior selectivity for OTA vs. OTB due to the lower penalty associated with solvating its bound complex. Advanced MD approaches provide structural and energetic insights critical to the hapten-specific recognition to aid the engineering of peptides with better sensing efficacies.
Collapse
|
22
|
Josić D, Peršurić Ž, Rešetar D, Martinović T, Saftić L, Kraljević Pavelić S. Use of Foodomics for Control of Food Processing and Assessing of Food Safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 81:187-229. [PMID: 28317605 DOI: 10.1016/bs.afnr.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Food chain, food safety, and food-processing sectors face new challenges due to globalization of food chain and changes in the modern consumer preferences. In addition, gradually increasing microbial resistance, changes in climate, and human errors in food handling remain a pending barrier for the efficient global food safety management. Consequently, a need for development, validation, and implementation of rapid, sensitive, and accurate methods for assessment of food safety often termed as foodomics methods is required. Even though, the growing role of these high-throughput foodomic methods based on genomic, transcriptomic, proteomic, and metabolomic techniques has yet to be completely acknowledged by the regulatory agencies and bodies. The sensitivity and accuracy of these methods are superior to previously used standard analytical procedures and new methods are suitable to address a number of novel requirements posed by the food production sector and global food market.
Collapse
Affiliation(s)
- D Josić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia.
| | - Ž Peršurić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - D Rešetar
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - T Martinović
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - L Saftić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - S Kraljević Pavelić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| |
Collapse
|
23
|
Martinović T, Andjelković U, Gajdošik MŠ, Rešetar D, Josić D. Foodborne pathogens and their toxins. J Proteomics 2016; 147:226-235. [PMID: 27109345 DOI: 10.1016/j.jprot.2016.04.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Foodborne pathogens, mostly bacteria and fungi, but also some viruses, prions and protozoa, contaminate food during production and processing, but also during storage and transport before consuming. During their growth these microorganisms can secrete different components, including toxins, into the extracellular environment. Other harmful substances can be also liberated and can contaminate food after disintegration of food pathogens. Some bacterial and fungal toxins can be resistant to inactivation, and can survive harsh treatment during food processing. Many of these molecules are involved in cellular processes and can indicate different mechanisms of pathogenesis of foodborne organisms. More knowledge about food contaminants can also help understand their inactivation. In the present review the use of proteomics, peptidomics and metabolomics, in addition to other foodomic methods for the detection of foodborne pathogenic fungi and bacteria, is overviewed. Furthermore, it is discussed how these techniques can be used for discovering biomarkers for pathogenicity of foodborne pathogens, determining the mechanisms by which they act, and studying their resistance upon inactivation in food of animal and plant origin. BIOLOGICAL SIGNIFICANCE Comprehensive and comparative view into the genome and proteome of foodborne pathogens of bacterial or fungal origin and foodomic, mostly proteomic, peptidomic and metabolomic investigation of their toxin production and their mechanism of action is necessary in order to get further information about their virulence, pathogenicity and survival under stress conditions. Furthermore, these data pave the way for identification of biomarkers to trace sources of contamination with food-borne microorganisms and their endo- and exotoxins in order to ensure food safety and prevent the outbreak of food-borne diseases. Therefore, detection of pathogens and their toxins during production, transport and before consume of food produce, as well as protection against food spoilage is a task of great social, economic and public health importance.
Collapse
Affiliation(s)
- Tamara Martinović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Uroš Andjelković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Martina Šrajer Gajdošik
- Department of Chemistry, University of J. J. Strossmayer, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Dina Rešetar
- Centre of High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
24
|
Rapid Detection of Ochratoxin A in Malt by Cytometric Bead Array Based on Indirect Competition Principle. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60927-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|