1
|
Khasanov TA, Maleeva EE, Koshelev SG, Palikov VA, Palikova YA, Dyachenko IA, Kozlov SA, Andreev YA, Osmakov DI. Mutagenesis of the Peptide Inhibitor of ASIC3 Channel Introduces Binding to Thumb Domain of ASIC1a but Reduces Analgesic Activity. Mar Drugs 2024; 22:382. [PMID: 39330263 PMCID: PMC11432795 DOI: 10.3390/md22090382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Acid-sensing ion channels (ASICs), which act as proton-gating sodium channels, have garnered attention as pharmacological targets. ASIC1a isoform, notably prevalent in the central nervous system, plays an important role in synaptic plasticity, anxiety, neurodegeneration, etc. In the peripheral nervous system, ASIC1a shares prominence with ASIC3, the latter well established for its involvement in pain signaling, mechanical sensitivity, and inflammatory hyperalgesia. However, the precise contributions of ASIC1a in peripheral functions necessitate thorough investigation. To dissect the specific roles of ASICs, peptide ligands capable of modulating these channels serve as indispensable tools. Employing molecular modeling, we designed the peptide targeting ASIC1a channel from the sea anemone peptide Ugr9-1, originally targeting ASIC3. This peptide (A23K) retained an inhibitory effect on ASIC3 (IC50 9.39 µM) and exhibited an additional inhibitory effect on ASIC1a (IC50 6.72 µM) in electrophysiological experiments. A crucial interaction between the Lys23 residue of the A23K peptide and the Asp355 residue in the thumb domain of the ASIC1a channel predicted by molecular modeling was confirmed by site-directed mutagenesis of the channel. However, A23K peptide revealed a significant decrease in or loss of analgesic properties when compared to the wild-type Ugr9-1. In summary, using A23K, we show that negative modulation of the ASIC1a channel in the peripheral nervous system can compromise the efficacy of an analgesic drug. These results provide a compelling illustration of the complex balance required when developing peripheral pain treatments targeting ASICs.
Collapse
Affiliation(s)
- Timur A. Khasanov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Ekaterina E. Maleeva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| | - Sergey G. Koshelev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| | - Victor A. Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.A.P.); (Y.A.P.); (I.A.D.)
| | - Yulia A. Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.A.P.); (Y.A.P.); (I.A.D.)
| | - Igor A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.A.P.); (Y.A.P.); (I.A.D.)
| | - Sergey A. Kozlov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| | - Yaroslav A. Andreev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| | - Dmitry I. Osmakov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| |
Collapse
|
2
|
Osmakov DI, Tarasova NV, Nedorubov AA, Palikov VA, Palikova YA, Dyachenko IA, Andreev YA, Kozlov SA. Nocistatin and Products of Its Proteolysis Are Dual Modulators of Type 3 Acid-Sensing Ion Channels (ASIC3) with Algesic and Analgesic Properties. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2137-2145. [PMID: 38462456 DOI: 10.1134/s0006297923120155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
The neuropeptide nocistatin (NS) is expressed by the nervous system cells and neutrophils as a part of a precursor protein and can undergo stepwise limited proteolysis. Previously, it was shown that rat NS (rNS) is able to activate acid-sensing ion channels (ASICs) and that this effect correlates with the acidic nature of NS. Here, we investigated changes in the properties of rNS in the course of its proteolytic degradation by comparing the effects of the full-size rNS and its two cleavage fragments on the rat isoform 3 ASICs (ASIC3) expressed in X. laevis oocytes and pain perception in mice. The rNS acted as both positive and negative modulator by lowering the steady-state desensitization of ASIC3 at pH 6.8-7.0 and reducing the channel's response to stimuli at pH 6.0-6.9, respectively. The truncated rNSΔ21 peptide lacking 21 amino acid residues from the N-terminus retained the positive modulatory activity, while the C-terminal pentapeptide (rNSΔ30) acted only as a negative ASIC3 modulator. The effects of the studied peptides were confirmed in animal tests: rNS and rNSΔ21 induced a pain-related behavior, whereas rNSΔ30 showed the analgesic effect. Therefore, we have shown that the mode of rNS action changes during its stepwise degradation, from an algesic molecule through a pain enhancer to a pain reliever (rNSΔ30 pentapeptide), which can be considered as a promising drug candidate.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Nadezhda V Tarasova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Andrey A Nedorubov
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Victor A Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Yulia A Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Igor A Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
3
|
Gladkikh IN, Klimovich AA, Kalina RS, Kozhevnikova YV, Khasanov TA, Osmakov DI, Koshelev SG, Monastyrnaya MM, Andreev YA, Leychenko EV, Kozlov SA. Anxiolytic, Analgesic and Anti-Inflammatory Effects of Peptides Hmg 1b-2 and Hmg 1b-4 from the Sea Anemone Heteractis magnifica. Toxins (Basel) 2023; 15:toxins15050341. [PMID: 37235375 DOI: 10.3390/toxins15050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Acid-sensing ion channels (ASICs) have been known as sensors of a local pH change within both physiological and pathological conditions. ASIC-targeting peptide toxins could be potent molecular tools for ASIC-manipulating in vitro, and for pathology treatment in animal test studies. Two sea anemone toxins, native Hmg 1b-2 and recombinant Hmg 1b-4, both related to APETx-like peptides, inhibited the transient current component of human ASIC3-Δ20 expressed in Xenopus laevis oocytes, but only Hmg 1b-2 inhibited the rat ASIC3 transient current. The Hmg 1b-4 action on rASIC3 as a potentiator was confirmed once again. Both peptides are non-toxic molecules for rodents. In open field and elevated plus maze tests, Hmg 1b-2 had more of an excitatory effect and Hmg 1b-4 had more of an anxiolytic effect on mouse behavior. The analgesic activity of peptides was similar and comparable to diclofenac activity in an acid-induced muscle pain model. In models of acute local inflammation induced by λ-carrageenan or complete Freund's adjuvant, Hmg 1b-4 had more pronounced and statistically significant anti-inflammatory effects than Hmg 1b-2. It exceeded the effect of diclofenac and, at a dose of 0.1 mg/kg, reduced the volume of the paw almost to the initial volume. Our data highlight the importance of a comprehensive study of novel ASIC-targeting ligands, and in particular, peptide toxins, and present the slightly different biological activity of the two similar toxins.
Collapse
Affiliation(s)
- Irina N Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anna A Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Rimma S Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Yulia V Kozhevnikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey G Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Margarita M Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Elena V Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
4
|
Dulai JS, Smith ESJ, Rahman T. Acid-sensing ion channel 3: An analgesic target. Channels (Austin) 2021; 15:94-127. [PMID: 33258401 PMCID: PMC7801124 DOI: 10.1080/19336950.2020.1852831] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acid-sensing ion channel 3 (ASIC3) belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. There are 7 different ASIC subunits encoded by 5 different genes. Most ASIC subunits form trimeric ion channels that upon activation by extracellular protons mediate a transient inward current inducing cellular excitability. ASIC subunits exhibit differential tissue expression and biophysical properties, and the ability of subunits to form homo- and heteromeric trimers further increases the complexity of currents measured and their pharmacological properties. ASIC3 is of particular interest, not only because it exhibits high expression in sensory neurones, but also because upon activation it does not fully inactivate: a transient current is followed by a sustained current that persists during a period of extracellular acidity, i.e. ASIC3 can encode prolonged acidosis as a nociceptive signal. Furthermore, certain mediators sensitize ASIC3 enabling smaller proton concentrations to activate it and other mediators can directly activate the channel at neutral pH. Moreover, there is a plethora of evidence using transgenic mouse models and pharmacology, which supports ASIC3 as being a potential target for development of analgesics. This review will focus on current understanding of ASIC3 function to provide an overview of how ASIC3 contributes to physiology and pathophysiology, examining the mechanisms by which it can be modulated, and highlighting gaps in current understanding and future research directions.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Osmakov DI, Khasanov TA, Andreev YA, Lyukmanova EN, Kozlov SA. Animal, Herb, and Microbial Toxins for Structural and Pharmacological Study of Acid-Sensing Ion Channels. Front Pharmacol 2020; 11:991. [PMID: 32733241 PMCID: PMC7360831 DOI: 10.3389/fphar.2020.00991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are of the most sensitive molecular sensors of extracellular pH change in mammals. Six isoforms of these channels are widely represented in membranes of neuronal and non-neuronal cells, where these molecules are involved in different important regulatory functions, such as synaptic plasticity, learning, memory, and nociception, as well as in various pathological states. Structural and functional studies of both wild-type and mutant ASICs are essential for human care and medicine for the efficient treatment of socially significant diseases and ensure a comfortable standard of life. Ligands of ASICs serve as indispensable tools for these studies. Such bioactive compounds can be synthesized artificially. However, to date, the search for such molecules has been most effective amongst natural sources, such as animal venoms or plants and microbial extracts. In this review, we provide a detailed and comprehensive structural and functional description of natural compounds acting on ASICs, as well as the latest information on structural aspects of their interaction with the channels. Many of the examples provided in the review demonstrate the undoubted fundamental and practical successes of using natural toxins. Without toxins, it would not be possible to obtain data on the mechanisms of ASICs' functioning, provide detailed study of their pharmacological properties, or assess the contribution of the channels to development of different pathologies. The selectivity to different isoforms and variety in the channel modulation mode allow for the appraisal of prospective candidates for the development of new drugs.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
6
|
Logashina YA, Korolkova YV, Maleeva EE, Osmakov DI, Kozlov SA, Andreev YA. Refolding of disulfide containing peptides in fusion with thioredoxin. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Andreev YA, Osmakov DI, Koshelev SG, Maleeva EE, Logashina YA, Palikov VA, Palikova YA, Dyachenko IA, Kozlov SA. Analgesic Activity of Acid-Sensing Ion Channel 3 (ASIС3) Inhibitors: Sea Anemones Peptides Ugr9-1 and APETx2 versus Low Molecular Weight Compounds. Mar Drugs 2018; 16:E500. [PMID: 30545037 PMCID: PMC6316600 DOI: 10.3390/md16120500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023] Open
Abstract
Acid-sensing ion channel 3 (ASIC3) makes an important contribution to the development and maintenance of inflammatory and acid-induced pain. We compared different ASIC3 inhibitors (peptides from sea anemones (APETx2 and Ugr9-1) and nonpeptide molecules (sevanol and diclofenac)) in anti-inflammatory action and analgesic effects. All tested compounds had distinct effects on pH-induced ASIC3 current. APETx2 inhibited only transient current, whereas Ugr9-1 and sevanol decreased transient and sustained components of the current. The effect on mice was evaluated after administering an intramuscular injection in the acetic acid writhing pain model and the complete Freund's adjuvant-induced thermal hyperalgesia/inflammation test. The bell-shaped dependence of the analgesic effect was observed for APETx2 in the acetic acid-induced writhing test, as well as for sevanol and peptide Ugr9-1 in the thermal hyperalgesia test. This dependence could be evidence of the nonspecific action of compounds in high doses. Compounds reducing both components of ASIC3 current produced more significant pain relief than APETx2, which is an effective inhibitor of a transient current only. Therefore, the comparison of the efficacy of ASIC3 inhibitors revealed the importance of ASIC3-sustained currents' inhibition for promotion of acidosis-related pain relief.
Collapse
Affiliation(s)
- Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Sergey G Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Ekaterina E Maleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Yulia A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Victor A Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
| | - Yulia A Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
| | - Igor A Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
8
|
Li W, Huang L, Meng E, Wang X, Zhang D, Wang G. Effect of crude venom from the spider Chilobrachys jingzhao on the proliferation and differentiation of C17.2 neural stem cells. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1496033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wenying Li
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Lixiang Huang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Er Meng
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Dongyi Zhang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Gan Wang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
9
|
Kalina R, Gladkikh I, Dmitrenok P, Chernikov O, Koshelev S, Kvetkina A, Kozlov S, Kozlovskaya E, Monastyrnaya M. New APETx-like peptides from sea anemone Heteractis crispa modulate ASIC1a channels. Peptides 2018; 104:41-49. [PMID: 29684594 DOI: 10.1016/j.peptides.2018.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Sea anemones are an abundant source of various biologically active peptides. The hydrophobic 20% ethanol fraction of tropical sea anemone Heteractis crispa was shown to contain at least 159 peptide compounds including neurotoxins, proteinase and α-amylase inhibitors, as well as modulators of acid-sensing ion channels (ASICs). The three new peptides, π-AnmTX Hcr 1b-2, -3, and -4 (41 aa) (short names Hcr 1b-2, -3, -4), identified by a combination of reversed-phase liquid chromatography and mass spectrometry were found to belong to the class 1b sea anemone neurotoxins. The amino acid sequences of these peptides were determined by Edman degradation and tandem mass spectrometry. The percent of identity of Hcr 1b-2, -3, and -4 with well-known ASIC3 inhibitors Hcr 1b-1 from H. crispa and APETx2 from Anthopleura elegantissima is 95-78% and 46-49%, respectively. Electrophysiological experiments on homomeric ASIC channels expressed in Xenopus laevis oocytes establish that these peptides are the first inhibitors of ASIC1a derived from sea anemone venom. The major peptide, Hcr 1b-2, inhibited both rASIC1a (IC50 4.8 ± 0.3 μM; nH 0.92 ± 0.05) and rASIC3 (IC50 15.9 ± 1.1 μM; nH 1.0 ± 0.05). The maximum inhibition at saturating peptide concentrations reached 64% and 81%, respectively. In the model of acid-induced muscle pain Hcr 1b-2 was also shown to exhibit an antihyperalgesic effect, significantly reducing of the pain threshold of experimental animals.
Collapse
Affiliation(s)
- Rimma Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia.
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia.
| | - Pavel Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia
| | - Oleg Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia
| | - Sergey Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Aleksandra Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia
| | - Sergey Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia
| | | |
Collapse
|
10
|
Animal toxins for channelopathy treatment. Neuropharmacology 2017; 132:83-97. [PMID: 29080794 DOI: 10.1016/j.neuropharm.2017.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Ion channels are transmembrane proteins that allow passive flow of ions inside and/or outside of cells or cell organelles. Except mutations lead to nonfunctional protein production or abolished receptor entrance on the membrane surface an altered channel may have two principal conditions that can be corrected. The channel may conduct fewer ions through (loss-of-function mutations) or too many ions (gain-of-function mutations) compared to a normal channel. Toxins from animal venoms are specialised molecules that are generally oriented toward interactions with ion channels. This is a result of long coevolution between predators and their prey. On the molecular level, toxins activate or inhibit ion channels, so they are ideal molecules for restoring conductance in mutated channels. Another aspect of this long coevolution is that a broad variety of toxins have been fine tuned to recognize the channels of different species, keeping many amino acids substitution among sequences. Many peptide ligands with high selectivity to specific receptor subtypes have been isolated from animal venoms, some of which are absolutely non-toxic to humans and mammalians. It is expected that molecules that are selective to each known receptor can be found in animal venoms, but the pool of toxins currently does not override all receptors described as being involved in channelopathies. Modern investigating methods have enhanced the search process for selective ligands. One prominent method is a site-directed mutagenesis of existing toxins to change the selectivity or/and affinity to the selected receptor, which has shown positive results. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
|
11
|
Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. Neuropharmacology 2017; 127:173-184. [PMID: 28457973 DOI: 10.1016/j.neuropharm.2017.04.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 01/14/2023]
Abstract
Acid-sensing ion channels (ASICs) are proton-activated cation channels that are expressed in a variety of neuronal and non-neuronal tissues. As proton-gated channels, they have been implicated in many pathophysiological conditions where pH is perturbed. Venom derived compounds represent the most potent and selective modulators of ASICs described to date, and thus have been invaluable as pharmacological tools to study ASIC structure, function, and biological roles. There are now ten ASIC modulators described from animal venoms, with those from snakes and spiders favouring ASIC1, while the sea anemones preferentially target ASIC3. Some modulators, such as the prototypical ASIC1 modulator PcTx1 have been studied in great detail, while some of the newer members of the club remain largely unstudied. Here we review the current state of knowledge on venom derived ASIC modulators, with a particular focus on their molecular interaction with ASICs, what they have taught us about channel structure, and what they might still reveal about ASIC function and pathophysiological roles. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|