1
|
Zhang X, Qiao K, Cui R, Xu M, Cai S, Huang Q, Liu Z. Tetrodotoxin: The State-of-the-Art Progress in Characterization, Detection, Biosynthesis, and Transport Enrichment. Mar Drugs 2024; 22:531. [PMID: 39728106 DOI: 10.3390/md22120531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a neurotoxin that binds to sodium channels and blocks sodium conduction. Importantly, TTX has been increasingly detected in edible aquatic organisms. Because of this and the lack of specific antidotes, TTX poisoning is now a major threat to public health. However, it is of note that ultra-low dose TTX is an excellent analgesic with great medicinal value. These contradictory effects highlight the need for further research to elucidate the impacts and functional mechanisms of TTX. This review summarizes the latest research progress in relation to TTX sources, analogs, mechanisms of action, detection methods, poisoning symptoms, therapeutic options, biosynthesis pathways, and mechanisms of transport and accumulation in pufferfish. This review also provides a theoretical basis for reducing the poisoning risks associated with TTX and for establishing an effective system for its use and management to ensure the safety of fisheries and human health.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Ruimin Cui
- College of Food Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Shuilin Cai
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| |
Collapse
|
2
|
Malykin GV, Velansky PV, Magarlamov TY. Tetrodotoxin and Its Analogues (TTXs) in the Food-Capture and Defense Organs of the Palaeonemertean Cephalothrix cf. simula. Toxins (Basel) 2024; 16:43. [PMID: 38251259 PMCID: PMC10818845 DOI: 10.3390/toxins16010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Tetrodotoxin (TTX), an extremely potent low-molecular-weight neurotoxin, is widespread among marine animals including ribbon worms (Nemertea). Previously, studies on the highly toxic palaeonemertean Cephalothrix cf. simula showed that toxin-positive structures are present all over its body and are mainly associated with glandular cells and epithelial tissues. The highest TTXs concentrations were detected in a total extract from the intestine of the anterior part of the body and also in a total extract from the proboscis. However, many questions as to the TTXs distribution in the organs of the anterior part of the worm's body and the functions of the toxins in these organs are still unanswered. In the present report, we provide additional results of a detailed and comprehensive analysis of TTXs distribution in the nemertean's proboscis, buccal cavity, and cephalic gland using an integrated approach including high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), confocal laser scanning microscopy with anti-TTX antibodies, light and electron microscopies, and observations of feeding behavior. For the proboscis, we have found a TTXs profile different from that characteristic of other organs and tissues. We have also shown for the first time that the major amount of TTXs is localized in the anterior part of the proboscis that is mainly involved in hunting. TTX-containing glandular cells, which can be involved in the prey immobilization, have been found in the buccal cavities of the nemerteans. A significant contribution of the cephalic gland to the toxicity of this animal has been shown for the first time, and the role of the gland is hypothesized to be involved not only in protection against potential enemies but also in immobilizing prey. The data obtained have made it possible to extend the understanding of the role and features of the use of TTXs in the organs of the anterior part of nemertean's body.
Collapse
Affiliation(s)
| | | | - Timur Yu. Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
3
|
Liu S, Zhang Y, Chen Y, Su Y, Chen B, Wang Y, Xu M, Qiao K, Li S, Liu Z. Isolation and Purification of Protamine from the Cultured Takifugu flavidus and Its Physicochemical Properties. Molecules 2024; 29:263. [PMID: 38202846 PMCID: PMC10780564 DOI: 10.3390/molecules29010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Protamine is a cationic peptide derived from fish sperm and has several important functional properties: antibacterial properties, acting as a carrier for injectable insulin and as a heparin antagonist, combatting fatigue, etc. Thus, it has been widely used in medicinal applications and food products. Cultured Takifugu flavidus is a type of pufferfish with a delicious taste that is popular in China, and its production is increasing significantly. Therefore, protamine was extracted via acid extraction from the sperm of Takifugu flavidus and further isolated and purified via sephadex gel chromatography, ion exchange chromatography, and desalination chromatography. Furthermore, the physicochemical properties of protamine were investigated. The results showed that the sperm of the cultured T. flavidus were non-toxic, and the extracted and purified protamine had high contents of arginine (36.90%) and lysine (27.02%), respectively. The secondary structure of protamine was mainly β-folded and irregularly curled. Additionally, protamine exhibited high thermal stability with a denaturation temperature of 176 °C. This study would provide a theoretical basis for the structural analysis, bioactivity, and resource development of pufferfish protamine and help to promote the development of the pufferfish industry.
Collapse
Affiliation(s)
- Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Yue Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.C.)
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.C.)
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Yin Wang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Shuigen Li
- Fujian Fisheries Technical Extension Station, Fuzhou 350002, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| |
Collapse
|
4
|
Zhu H, Sakai T, Doi H, Yamaguchi K, Yamada A, Takatani T, Arakawa O. Tetrodotoxin/Saxitoxin Accumulation Profile in the Euryhaline Marine Pufferfish Chelonodontops patoca. Toxins (Basel) 2023; 16:18. [PMID: 38251235 PMCID: PMC10820246 DOI: 10.3390/toxins16010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Marine Takifugu pufferfish, which naturally possess tetrodotoxins (TTXs), selectively take up and accumulate TTXs, whereas freshwater Pao pufferfish, which naturally possess saxitoxins (STXs), selectively take up and accumulate STXs. To further clarify the TTXs/STXs selectivity in pufferfish, we conducted a TTX/STX administration experiment using Chelonodontops patoca, a euryhaline marine pufferfish possessing both TTXs and STXs. Forty nontoxic cultured individuals of C. patoca were divided into a seawater group (SW, acclimated/reared at 33‱ salinity; n = 20) and a brackish water group (BW, acclimated/reared at 8‱ salinity; n = 20). An aqueous TTX/STX mixture was intrarectally administered (both at 7.5 nmol/fish), and five individuals/group were analyzed after 1-48 h. Instrumental toxin analyses revealed that both TTX and STX were taken up, transferred, and retained, but more STX than TTX was retained in both groups. TTX gradually decreased and eventually became almost undetectable in the intestinal tissue, while STX was retained at ~5-10% of the dose level, and only STX showed transient transfer in the liver. The BW group showed a faster decrease/disappearance of TTX, greater STX retention in the intestine, and greater STX transient transfer to the liver. Thus, C. patoca appears to more easily accumulate STXs than TTXs, especially under hypoosmotic conditions.
Collapse
Affiliation(s)
- Hongchen Zhu
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Takashi Sakai
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Hiroyuki Doi
- Nifrel, Osaka Aquarium Kaiyukan, 2-1, Senribanpakukoen, Suita, Osaka 565-0826, Japan;
| | - Kenichi Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Akinori Yamada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| |
Collapse
|
5
|
Asano M, Ishizaki C, Tomonou T, Kihara M, Ito M, Yasukawa S, Shirai K, Oyama H, Izawa S, Kawamura R, Saito K, Suo R, Nakahigashi R, Adachi M, Nishikawa T, Sugita H, Itoi S. Levels of Tetrodotoxins in Spawning Pufferfish, Takifugu alboplumbeus. Mar Drugs 2023; 21:md21040207. [PMID: 37103347 PMCID: PMC10141859 DOI: 10.3390/md21040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Tetrodotoxin (TTX), also known as pufferfish toxin, is an extremely potent neurotoxin thought to be used as a biological defense compound in organisms bearing it. Although TTX was thought to function as a chemical agent for defense and anti-predation and an attractant for TTX-bearing animals including pufferfish, it has recently been demonstrated that pufferfish were also attracted to 5,6,11-trideoxyTTX, a related compound, rather than TTX alone. In this study, we attempted to estimate the roles of TTXs (TTX and 5,6,11-trideoxyTTX) in the pufferfish, Takifugu alboplumbeus, through examining the location of TTXs in various tissues of spawning pufferfish from Enoshima and Kamogawa, Japan. TTXs levels in the Kamogawa population were higher than those in the Enoshima population, and there was no significant difference in the amount of TTXs between the sexes in either population. Individual differences were greater in females than in males. However, the location of both substances in tissues differed significantly between sexes: male pufferfish accumulated most of their TTX in the skin and liver and most of their 5,6,11-trideoxyTTX in the skin, whereas females accumulated most of their TTX and 5,6,11-trideoxyTTX in the ovaries and skin.
Collapse
|
6
|
Local and Traditional Ecological Knowledge of Fish Poisoning in Fiji. Toxins (Basel) 2023; 15:toxins15030223. [PMID: 36977114 PMCID: PMC10051453 DOI: 10.3390/toxins15030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Fish poisoning (FP) affects human health, trade and livelihood in Fiji, where management has depended mainly on traditional ecological knowledge (TEK). This paper investigated and documented this TEK through a 2-day stakeholder workshop, group consultation, in-depth interviews, field observations, and analyses of survey data from the Ministry of Fisheries, Fiji. Six TEK topics were identified and classified as preventative and treatment options. The preventive approach involves identifying toxic reef fishes, the spawning season of edible seaworms, hotspot areas of toxic fishes, folk tests, and locating and removing toxic organs. For example, 34 reef fish species were identified as toxic. The FP season was associated with the spawning of balolo (edible seaworm) and the warmer months of October to April (cyclone seasons). Two well-known toxic hotspots associated with an abundance of bulewa (soft coral) were identified. Folk tests and locating and removing toxic fish organs are also practised for moray eels and pufferfish. At the same time, various locally available herbal plants are used to treat FP as the second line of defence. The TEK collated in this work can help local authorities better identify the sources of toxicity, and applying TEK preventive measures could stem the tide of fish poisoning in Fiji.
Collapse
|
7
|
An almost nontoxic tetrodotoxin analog, 5,6,11-trideoxytetrodotoxin, as an odorant for the grass puffer. Sci Rep 2022; 12:15087. [PMID: 36064732 PMCID: PMC9445045 DOI: 10.1038/s41598-022-19355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
Toxic puffers contain the potent neurotoxin, tetrodotoxin (TTX). Although TTX is considered to serve as a defense substance, previous behavioral studies have demonstrated that TTX acts as an attractive pheromone for some toxic puffers. To elucidate the physiological mechanism of putative pheromonal action of TTX, we examined whether grass puffers Takifugu alboplumbeus can detect TTX. Electroolfactogram (EOG) results suggest that the olfactory epithelium (OE) of grass puffers responded to a type of TTX analog (5,6,11-trideoxyTTX), although it did not respond to TTX. We also examined the attractive action of 5,6,11-trideoxyTTX on grass puffers by recording their swimming behavior under dark conditions. Grass puffers preferred to stay on the side of the aquarium where 5,6,11-trideoxyTTX was administered, and their swimming speed decreased. Additionally, odorant-induced labeling of olfactory sensory neurons by immunohistochemistry against neural activity marker (phosphorylated extracellular signal regulated kinase; pERK) revealed that labeled olfactory sensory neurons were localized in the region surrounding "islets" where there was considered as nonsensory epithelium. 5,6,11-trideoxyTTX has been known to accumulate in grass puffers, but its toxicity is much lower (almost nontoxic) than TTX. Our results suggest that toxic puffers may positively use this TTX analog, which has been present in their body with TTX but whose function was unknown, as an odorant for chemical communication or effective TTX accumulation.
Collapse
|
8
|
Zhang H, Li P, Wu B, Hou J, Ren J, Zhu Y, Xu J, Si F, Sun Z, Liu X. Transcriptomic analysis reveals the genes involved in tetrodotoxin (TTX) accumulation, translocation, and detoxification in the pufferfish Takifugu rubripes. CHEMOSPHERE 2022; 303:134962. [PMID: 35580645 DOI: 10.1016/j.chemosphere.2022.134962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin that exists in a variety of aquatic and terrestrial organisms. Pufferfish in different habitats show great variation in their TTX contents. Exploring the genes involved in TTX metabolism could contribute to our understanding of the molecular mechanisms underlying TTX accumulation, translocation, and detoxification in pufferfish. In this study, transcriptomic analysis was used to identify the functional genes related to TTX metabolism in the blood, liver, and muscle of the toxic and non-toxic tiger puffer (Takifugu rubripes). A total of 6101 differentially expressed genes (DEGs) were obtained after transcriptomic analysis; of these, 2401 were identified in the blood, 2262 in the liver, and 1438 in the muscle. After enrichment analysis, fourteen genes encoding glutathione S-transferases (GSTs), glutathione peroxidase (GPx), thioredoxins (TXNs), superoxide dismutase (SOD), ATP-binding cassettes (ABCs), apolipoproteins (APOs), inhibitors of apoptosis protein (IAP), and solute carrier (SLC), which are mainly antioxidant enzymes, membrane transporters, or anti-apoptotic factors, were revealed in the blood. Thirty-six genes encoding SLCs, ABCs, long-chain-fatty-acid-CoA ligases (ACSLs), interleukin 6 cytokine family signal transducer (IL6ST), endoplasmic reticulum (ER), and heat shock protein family A (Hsp70) were involved in transmembrane transporter activity and innate immune response. Notably, a large number of slc genes were found to play critical and diverse roles in TTX accumulation and translocation in the liver of T. rubripes. Nine genes from the slc, hsp70, complement C5 (c5), acsl, er, and serpin peptidase inhibitor (serpin) gene families were found to participate in the regulation of protein processing and anti-apoptosis. These results reflect the diverse functions of genes closely related to TTX accumulation, translocation, and detoxification in T. rubripes.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Peizhen Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Biyin Wu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Jiangong Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Youxiu Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Fei Si
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Zhaohui Sun
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Xia Liu
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| |
Collapse
|
9
|
Melnikova DI, Magarlamov TY. An Overview of the Anatomical Distribution of Tetrodotoxin in Animals. Toxins (Basel) 2022; 14:toxins14080576. [PMID: 36006238 PMCID: PMC9412668 DOI: 10.3390/toxins14080576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrodotoxin (TTX), a potent paralytic sodium channel blocker, is an intriguing marine toxin. Widely distributed in nature, TTX has attracted attention in various scientific fields, from biomedical studies to environmental safety concerns. Despite a long history of studies, many issues concerning the biosynthesis, origin, and spread of TTX in animals and ecosystems remain. This review aims to summarize the current knowledge on TTX circulation inside TTX-bearing animal bodies. We focus on the advances in TTX detection at the cellular and subcellular levels, providing an expanded picture of intra-organismal TTX migration mechanisms. We believe that this review will help address the gaps in the understanding of the biological function of TTX and facilitate the development of further studies involving TTX-bearing animals.
Collapse
|
10
|
He X, Wu H, Ye Y, Gong X, Bao B. Transcriptome analysis revealed gene expression feminization of testis after exogenous tetrodotoxin administration in pufferfish Takifugu flavidus. BMC Genomics 2022; 23:553. [PMID: 35922761 PMCID: PMC9347094 DOI: 10.1186/s12864-022-08787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hexing Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolin Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
11
|
Suo R, Tanaka M, Oyama H, Kojima Y, Yui K, Sakakibara R, Nakahigashi R, Adachi M, Nishikawa T, Sugita H, Itoi S. Tetrodotoxins in the flatworm Planocera multitentaculata. Toxicon 2022; 216:169-173. [PMID: 35843466 DOI: 10.1016/j.toxicon.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
The marine polyclad flatworm Planocera multitentaculata is known to possess high levels of tetrodotoxin (TTX), but the presence of TTX analogues in the species has been unexplored. In this study, TTX and several analogues such as 5,6,11-trideoxyTTX, monodeoxyTTXs, dideoxyTTXs, and 11-norTTX-6(S)-ol were identified in three adults and egg plates of P. multitentaculata using high resolution liquid chromatography-mass spectrometry (HR-LC/MS) for the first time.
Collapse
Affiliation(s)
- Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Makoto Tanaka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yuki Kojima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kentaro Yui
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Sakakibara
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
12
|
|
13
|
Molecular Characterization of the Von Willebrand Factor Type D Domain of Vitellogenin from Takifugu flavidus. Mar Drugs 2021; 19:md19040181. [PMID: 33806251 PMCID: PMC8065724 DOI: 10.3390/md19040181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
The von Willebrand factor type D (VWD) domain in vitellogenin has recently been found to bind tetrodotoxin. The way in which this protein domain associates with tetrodotoxin and participates in transporting tetrodotoxin in vivo remains unclear. A cDNA fragment of the vitellogenin gene containing the VWD domain from pufferfish (Takifugu flavidus) (TfVWD) was cloned. Using in silico structural and docking analyses of the predicted protein, we determined that key amino acids (namely, Val115, ASP116, Val117, and Lys122) in TfVWD mediate its binding to tetrodotoxin, which was supported by in vitro surface plasmon resonance analysis. Moreover, incubating recombinant rTfVWD together with tetrodotoxin attenuated its toxicity in vivo, further supporting protein–toxin binding and indicating associated toxicity-neutralizing effects. Finally, the expression profiling of TfVWD across different tissues and developmental stages indicated that its distribution patterns mirrored those of tetrodotoxin, suggesting that TfVWD may be involved in tetrodotoxin transport in pufferfish. For the first time, this study reveals the amino acids that mediate the binding of TfVWD to tetrodotoxin and provides a basis for further exploration of the molecular mechanisms underlying the enrichment and transfer of tetrodotoxin in pufferfish.
Collapse
|
14
|
Tatsuno R, Umeeda M, Miyata Y, Ideguchi R, Fukuda T, Furushita M, Ino Y, Yoshikawa H, Takahashi H, Nagashima Y. [Toxicity of Takifugu exascurusCollected from the Sea of Kumano]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2021; 62:28-32. [PMID: 33658461 DOI: 10.3358/shokueishi.62.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine pufferfish Takifugu exascurus is not approved for human consumption due to the lack of information on its toxicity. To clarify the toxicity of T. exascurus, ten live specimens were collected from the Sea of Kumano, Japan, and the toxicity and tetrodotoxin (TTX) concentration were determined using mouse bioassay and high performance liquid chromatography-fluorescence detection (HPLC-FLD), respectively. Toxicity was observed in the skin, liver, and ovaries, but the testes and muscle were non-toxic (<10 MU/g). On the other hand, HPLC-FLD revealed that TTX was detected in the muscle in two of the 10 specimens (1.4 and 1.5 MU/g). Based on the results, TTX is the main toxic component contributing to toxicity in T. exascurus.
Collapse
Affiliation(s)
- Ryohei Tatsuno
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Masato Umeeda
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Yumi Miyata
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Ririko Ideguchi
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Tsubasa Fukuda
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Manabu Furushita
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Yasuko Ino
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency
| | - Hiroyuki Yoshikawa
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency
| | - Hiroshi Takahashi
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency
| | - Yuji Nagashima
- Department of Agro-Food Science, Niigata Agro-Food University
| |
Collapse
|
15
|
Itoi S, Sato T, Takei M, Yamada R, Ogata R, Oyama H, Teranishi S, Kishiki A, Wada T, Noguchi K, Abe M, Okabe T, Akagi H, Kashitani M, Suo R, Koito T, Takatani T, Arakawa O, Sugita H. The planocerid flatworm is a main supplier of toxin to tetrodotoxin-bearing fish juveniles. CHEMOSPHERE 2020; 249:126217. [PMID: 32088461 DOI: 10.1016/j.chemosphere.2020.126217] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Tetrodotoxin (TTX), a potent neurotoxin, is found in various phylogenetically diverse taxa. In marine environments, the pufferfish is at the top of the food chain among TTX-bearing organisms. The accumulation of TTX in the body of pufferfish appears to be of the food web that begins with bacteria. It is known that toxic pufferfishes possess TTX from the larval/juvenile stage. However, the source of the TTX is unknown because the maternally sourced TTX is extremely small in quantity. Therefore, the TTX has to be obtained from other organisms or directly from the environment. Here, we report evidence that the source of TTX for toxic fish juveniles including the pufferfish (Chelonodon patoca) and the goby (Yongeichthys criniger) is in the food organisms, as seen in their gut contents. Next generation sequencing analysis for the mitochondrial COI gene showed that the majority of the sequence recovered from intestinal contents of these toxic fishes belonged to the flatworm Planocera multitentaculata, a polyclad flatworm containing highly concentrated TTX from the larval stage. PCR specific to P. multitentaculata also showed that DNA encoding the planocerid COI gene was strongly detected in the intestinal contents of the goby and pufferfish juveniles. Additionally, the planocerid specific COI sequence was detected in the environmental seawater collected from the water around the sampling locations for TTX-bearing fish. These results suggest that planocerid larvae are the major TTX supplier for juveniles of TTX-bearing fish species.
Collapse
Affiliation(s)
- Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Tatsunori Sato
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mitsuki Takei
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Riko Yamada
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryuya Ogata
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shun Teranishi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ayano Kishiki
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takenori Wada
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kaede Noguchi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Misato Abe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroyuki Akagi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomoko Koito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki, 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki, 852-8521, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
16
|
Puffer Fish Gut Microbiota Studies Revealed Unique Bacterial Co-Occurrence Patterns and New Insights on Tetrodotoxin Producers. Mar Drugs 2020; 18:md18050278. [PMID: 32466241 PMCID: PMC7281374 DOI: 10.3390/md18050278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin isolated mainly from toxic puffer fish. To date, the TTX biosynthetic mechanism inside its hosts remains unresolved. Here, we hypothesize the TTX synthesis relies on the host gut microbiota, including the neglected non-culturable bacteria. In these studies, we collected the gut contents from 5 puffer fish species of the genus Takifugu including one suspected hybrid species for gut microbiota study by 16S rRNA amplicon metagenomics approach. Their gut samples were divided into toxic and non-toxic groups based on the TTX concentrations in the livers detected by LC-MS/MS. Bacterial diversity studies showed that gut microbiota structures were significantly different between toxic and non-toxic species. Vibrio and Cyanobacteria centered at the gut bacterial co-occurrence network, suggesting their importance in TTX biosynthesis. The results of PICRUSt2 metagenomic prediction and gene set enrichment analysis provided new support of arginine-precursor required in TTX biosynthesis. This is the first study to profile the gut microbiota in toxic and non-toxic puffer fish species by 16S rRNA amplicon metagenomic approach, defining significant microbial co-occurrence patterns in their gut environment. Our data supported the proposed biosynthesis of TTX inside the hosts by their gut bacterial symbionts using arginine as a precursor.
Collapse
|
17
|
Evaluation of the tetrodotoxin uptake ability of pufferfish Takifugu rubripes tissues according to age using an in vitro tissue slice incubation method. Toxicon 2020; 174:8-12. [PMID: 31785287 DOI: 10.1016/j.toxicon.2019.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022]
Abstract
The tetrodotoxin (TTX) uptake ability of pufferfish Takifugu rubripes tissues and its growth-associated changes were investigated using an in vitro tissue slice incubation method. Tissue slices prepared from the liver, skin, and intestine of a non-toxic cultured adult T. rubripes (20 months old) and incubated with incubation buffer containing 25 μg/mL TTX for 1-48 h showed a time-dependent increase in the TTX content in all tissues. The TTX contents of the skin and intestine slices were comparable to or slightly higher than that of the liver slices, with a similar transition pattern, suggesting similar TTX uptake ability among the skin, intestine, and liver. The TTX uptake ability of the liver and intestine did not differ significantly between young (8 months old) and adult (20 months old) fish, but the skin slices of young fish took up approximately twice as much TTX as that of adult fish, suggesting that the TTX uptake ability of the skin is involved in the growth-dependent changes in the toxin distribution inside the body in T. rubripes. To estimate the TTX uptake pathway in each tissue, an immunohistochemical technique was used to observe temporal changes in the intra-tissue microdistribution of TTX during incubation. The findings suggested that TTX is transferred and accumulates from pancreatic exocrine cells to hepatic parenchymal cells in the liver, from connective tissues to basal cells in the skin, and from villi epithelial cells via the lamina propria to the muscle layer in the intestine.
Collapse
|
18
|
Convergent and parallel evolution in a voltage-gated sodium channel underlies TTX-resistance in the Greater Blue-ringed Octopus: Hapalochlaena lunulata. Toxicon 2019; 170:77-84. [DOI: 10.1016/j.toxicon.2019.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
|
19
|
Itoi S, Tabuchi S, Abe M, Ueda H, Oyama H, Ogata R, Okabe T, Kishiki A, Sugita H. Difference in tetrodotoxin content between two sympatric planocerid flatworms, Planocera multitentaculata and Planocera reticulata. Toxicon 2019; 173:57-61. [PMID: 31778684 DOI: 10.1016/j.toxicon.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/24/2019] [Indexed: 11/20/2022]
Abstract
Planocerid flatworms and the related species (Platyhelminthes: polycladida) are known as tetrodotoxin (TTX)-bearing organisms, and they contribute to toxification of marine organisms at higher trophic levels, such as pufferfish and sea slugs. However, little is known of their biology or ecology. In this study, we therefore investigated the occurrence and toxicity of two sympatric planocerids, Planocera multitentaculata and Planocera reticulata, in intertidal zones of the central region of mainland Honshu, Japanese Islands. Planocera multitentaculata was much more abundant than P. reticulata. Body weight was greater in P. multitentaculata than in P. reticulata. Although a significant difference in TTX concentration was not observed between the two species, total TTX content per individual was greater in P. multitentaculata.
Collapse
Affiliation(s)
- Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Sora Tabuchi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Misato Abe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryuya Ogata
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ayano Kishiki
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
20
|
Okabe T, Oyama H, Kashitani M, Ishimaru Y, Suo R, Sugita H, Itoi S. Toxic Flatworm Egg Plates Serve as a Possible Source of Tetrodotoxin for Pufferfish. Toxins (Basel) 2019; 11:E402. [PMID: 31373322 PMCID: PMC6669758 DOI: 10.3390/toxins11070402] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/26/2022] Open
Abstract
The pufferfish Takifugu niphobles (at present Takifugu alboplumbeus) possesses highly concentrated tetrodotoxin (TTX), an extremely potent neurotoxin that provides effective protection from predators, at least at the larval stages. However, the source of the toxin has remained unclear. Recently, DNA from the toxic flatworm Planocera multitentaculata was detected in the intestinal contents of juveniles and young of the pufferfish, suggesting that the flatworm contributes to its toxification at various stages of its life. In this study, we describe the behavior of the pufferfish in the intertidal zone that appears to contribute to its toxification before and during its spawning period: pufferfish were found to aggregate and ingest flatworm egg plates by scraping them off the surface of rocks. DNA analysis based on 28S rRNA and cytochrome c oxidase subunit I (COI) genes identified the egg plates as those of P. multitentaculata. Liquid chromatography with tandem mass spectrometry analysis revealed that the egg plates contain highly concentrated TTX. The feeding behavior of the pufferfish on the flatworm egg plates was also observed in the aquarium. These results suggest that pufferfish feed on the flatworm egg plate, which enables them to acquire toxicity themselves while providing their offspring with the protective shield of TTX.
Collapse
Affiliation(s)
- Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuta Ishimaru
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
21
|
Itoi S, Ueda H, Yamada R, Takei M, Sato T, Oshikiri S, Wajima Y, Ogata R, Oyama H, Shitto T, Okuhara K, Tsunashima T, Sawayama E, Sugita H. Including planocerid flatworms in the diet effectively toxifies the pufferfish, Takifugu niphobles. Sci Rep 2018; 8:12302. [PMID: 30120305 PMCID: PMC6098040 DOI: 10.1038/s41598-018-30696-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/04/2018] [Indexed: 11/26/2022] Open
Abstract
Beginning with the larval stages, marine pufferfish such as Takifugu niphobles contain tetrodotoxin (TTX), an extremely potent neurotoxin. Although highly concentrated TTX has been detected in adults and juveniles of these fish, the source of the toxin has remained unclear. Here we show that TTX in the flatworm Planocera multitentaculata contributes to the toxification of the pufferfish throughout the life cycle of the flatworm. A species-specific PCR method was developed for the flatworm, and the specific DNA fragment was detected in the digesta of wild pufferfish adults. Predation experiments showed that flatworm larvae were eaten by the pufferfish juveniles, and that the two-day postprandial TTX content in these pufferfish was 20–50 μg/g. Predation experiments additionally showed flatworm adults were also eaten by pufferfish young, and after two days of feeding, TTX accumulated in the skin, liver and intestine of the pufferfish.
Collapse
Affiliation(s)
- Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Riko Yamada
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mitsuki Takei
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tatsunori Sato
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shotaro Oshikiri
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yoshiki Wajima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryuya Ogata
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takahiro Shitto
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazuya Okuhara
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tadasuke Tsunashima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Eitaro Sawayama
- R&D Division, Marua Suisan Co., Ltd. Kamijima, Ehime, 794-2410, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
22
|
Role of maternal tetrodotoxin in survival of larval pufferfish. Toxicon 2018; 148:95-100. [DOI: 10.1016/j.toxicon.2018.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/03/2018] [Accepted: 04/14/2018] [Indexed: 11/20/2022]
|
23
|
Ueda H, Itoi S, Sugita H. TTX-Bearing Planocerid Flatworm (Platyhelminthes: Acotylea) in the Ryukyu Islands, Japan. Mar Drugs 2018; 16:E37. [PMID: 29351203 PMCID: PMC5793085 DOI: 10.3390/md16010037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
Polyclad flatworms comprise a highly diverse and cosmopolitan group of marine turbellarians. Although some species of the genera Planocera and Stylochoplana are known to be tetrodotoxin (TTX)-bearing, there are few new reports. In this study, planocerid-like flatworm specimens were found in the sea bottom off the waters around the Ryukyu Islands, Japan. The bodies were translucent with brown reticulate mottle, contained two conical tentacles with eye spots clustered at the base, and had a slightly frilled-body margin. Each specimen was subjected to TTX extraction followed by liquid chromatography with tandem mass spectrometry analysis. Mass chromatograms were found to be identical to those of the TTX standards. The TTX amounts in the two flatworm specimens were calculated to be 468 and 3634 μg. Their external morphology was found to be identical to that of Planocera heda. Phylogenetic analysis based on the sequences of the 28S rRNA gene and cytochrome-c oxidase subunit I gene also showed that both specimens clustered with the flatworms of the genus Planocera (Planocera multitentaculata and Planocera reticulata). This fact suggests that there might be other Planocera species that also possess highly concentrated TTX, contributing to the toxification of TTX-bearing organisms, including fish.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
24
|
Yin X, Kiriake A, Ohta A, Kitani Y, Ishizaki S, Nagashima Y. A novel function of vitellogenin subdomain, vWF type D, as a toxin-binding protein in the pufferfish Takifugu pardalis ovary. Toxicon 2017; 136:56-66. [PMID: 28651990 DOI: 10.1016/j.toxicon.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/25/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
Abstract
Marine pufferfish of the Tetraodontidae family contain high levels of tetrodotoxin (TTX) in the liver and ovary. TTX is suggested to transfer from the liver to the ovary in female pufferfish during maturation. TTX in pufferfish eggs may act as a repellent against predators and as a sexual pheromone to attract male pufferfish. The toxification mechanism of the pufferfish ovary is poorly understood. Here we evaluated the chemical form of TTX and its related substances in the ovary of the panther pufferfish Takifugu pardalis by LC-ESI/MS. TTX and its analogs 4-epi-TTX, 4, 9-anhydroTTX, deoxyTTX, dideoxyTTX, and trideoxyTTX were detected in a low molecular weight fraction by Sephacryl S-400 column chromatography. The finding of an unknown TTX-related substance in a high molecular weight fraction from the Sephacryl S-400 column suggested the occurrence of toxin-binding protein in the ovary. The toxin-binding protein in the ovary was purified by ion-exchange HPLC, gel filtration HPLC, and SDS-PAGE. Amino acid sequencing and cDNA cloning revealed that the toxin-binding protein, TPOBP-10 (Takifugu pardalis ovary toxin-binding protein with a molecular mass of 10 kDa) was homologous with the predicted vitellogenin-1-like protein [Takifugu rubripes] subdomain, a von Willebrand factor type D domain. TPOBP-10 mRNA was highly expressed in the ovary and liver and less in other organs of female individuals based on RT-PCR. These findings reveal a novel function of the vitellogenin subdomain as binding with TTX-related substances, and its involvement in the toxification of the pufferfish ovary.
Collapse
Affiliation(s)
- Xianzhe Yin
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Aya Kiriake
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Akira Ohta
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Yoichiro Kitani
- Faculty of Biosciences and Aquaculture, NORD University, Bodø 8049, Norway
| | - Shoichiro Ishizaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Yuji Nagashima
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
25
|
Seasonal Changes in the Tetrodotoxin Content of the Flatworm Planocera multitentaculata. Mar Drugs 2017; 15:md15030056. [PMID: 28245608 PMCID: PMC5367013 DOI: 10.3390/md15030056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 11/18/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin that acts specifically on voltage-gated sodium channels on excitable membranes of muscle and nerve tissues. The biosynthetic process for TTX is unclear, although marine bacteria are generally thought to be the primary producers. The marine flatworm Planocera multitentaculata is a known TTX-bearing organism, and is suspected to be a TTX supplier to pufferfish. In this study, flatworm specimens were collected from an intertidal zone in Hayama, Kanagawa, Japan, the TTX content of the flatworm was measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS), and seasonal changes in TTX content were investigated. No significant difference in TTX concentration of the flatworm body was found between the spawning period and other periods. However, the TTX content in individual flatworms was significantly higher in the spawning period than at other times. The TTX content rose in association with an increase in the body weight of the flatworm.
Collapse
|