1
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
2
|
Rodríguez S, García-García A, Garcia-Calvo E, Esteban V, Pastor-Vargas C, Díaz-Perales A, García T, Martín R. Generation of an Ovomucoid-Immune scFv Library for the Development of Novel Immunoassays in Hen's Egg Detection. Foods 2023; 12:3831. [PMID: 37893724 PMCID: PMC10606182 DOI: 10.3390/foods12203831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hen's egg allergy is the second most common food allergy among infants and young children. The possible presence of undeclared eggs in foods poses a significant risk to sensitized individuals. Therefore, reliable egg allergen detection methods are needed to ensure compliance with food labeling and improve consumer protection. This work describes for the first time the application of phage display technology for the generation of a recombinant antibody aimed at the specific detection of hen's ovomucoid. First, a single-chain variable fragment (scFv) library was constructed from mRNA isolated from the spleen of a rabbit immunized with ovomucoid. After rounds of biopanning, four binding clones were isolated and characterized. Based on the best ovomucoid-binding candidate SR-G1, an indirect phage enzyme-linked immunosorbent assay (phage-ELISA) was developed, reaching limits of detection and quantitation of 43 and 79 ng/mL of ovomucoid, respectively. The developed ELISA was applied to the analysis of a wide variety of food products, obtaining a good correlation with a commercial egg detection assay used as a reference. Finally, in silico modeling of the antigen-antibody complex revealed that the main interactions most likely occur between the scFv heavy chain and the ovomucoid domain-III, the most immunogenic region of this allergen.
Collapse
Affiliation(s)
- Santiago Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Aina García-García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Eduardo Garcia-Calvo
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Vanesa Esteban
- Departamento de Alergia e Inmunología, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), 28040 Madrid, Spain;
| | - Carlos Pastor-Vargas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Araceli Díaz-Perales
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), 28223 Madrid, Spain;
| | - Teresa García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| | - Rosario Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (S.R.); (E.G.-C.); (T.G.); (R.M.)
| |
Collapse
|
3
|
Alassiri M, Lai JY, Ch'ng ACW, Choong YS, Alanazi A, Lim TS. Subtractive panning for the isolation of monoclonal PEPITEM peptide antibody by phage display. Sci Rep 2023; 13:13627. [PMID: 37604859 PMCID: PMC10442400 DOI: 10.1038/s41598-023-40630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Antibody phage display is a key tool for the development of monoclonal antibodies against various targets. However, the development of anti-peptide antibodies is a challenging process due to the small size of peptides for binding. This makes anchoring of peptides a preferred approach for panning experiments. A common approach is by using streptavidin as the anchor protein to present biotinylated peptides for panning. Here, we propose the use of recombinant expression of the target peptide and an immunogenic protein as a fusion for panning. The peptide inhibitor of trans-endothelial migration (PEPITEM) peptide sequence was fused to the Mycobacterium tuberculosis (Mtb) α-crystalline (AC) as an anchor protein. The panning process was carried out by subtractive selection of the antibody library against the AC protein first, followed by binding to the library to PEPITEM fused AC (PEPI-AC). A unique monoclonal scFv antibodies with good specificity were identified. In conclusion, the use of an alternative anchor protein to present the peptide sequence coupled with subtractive panning allows for the identification of unique monoclonal antibodies against a peptide target.
Collapse
Affiliation(s)
- Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia.
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia.
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of the National Guard - Health Affairs, Riyadh, Kingdom of Saudi Arabia.
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Asma Alanazi
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
4
|
Lai JY, Corona A, Ng CL, Tramontano E, Choong YS, Lim TS. Naïve antibody library derived monoclonal antibody against VP35 of Ebola virus. Int J Biol Macromol 2023:125571. [PMID: 37379953 DOI: 10.1016/j.ijbiomac.2023.125571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Ebola virus is notorious for causing severe and even deadly haemorrhagic fever in infected humans and non-human primates. The high fatality rate of Ebola virus disease (EVD) has highlighted the need for effective diagnosis and treatment. Two monoclonal antibodies (mAbs) have been approved by USFDA for treatment of EVD. Virus surface glycoprotein is the common target for diagnostic and therapy including vaccines. Even so, VP35, a viral RNA polymerase cofactor and interferon inhibitor could be a potential target to curb EVD. The present work describes the isolation of three mAb clones from a phage-displayed human naïve scFv library against recombinant VP35. The clones showed binding against rVP35 in vitro and inhibition of VP35 in luciferase reporter gene assay. Structural modelling analysis was also carried out to identify the binding interactions involved in the antibody-antigen interaction model. This allows some insight into the "fitness" of the binding pocket between the paratope and target epitope which would be useful for the design of new mAbs through in silico means in the future. In conclusion, the information obtained from the 3 isolated mAbs could be potentially useful in the quest to improve VP35 targeting for therapeutic development in the future.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Chong Lee Ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
5
|
Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis. Molecules 2023; 28:molecules28062621. [PMID: 36985593 PMCID: PMC10052323 DOI: 10.3390/molecules28062621] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The emergence of antibiotic-resistant-bacteria is a serious public health threat, which prompts us to speed up the discovery of novel antibacterial agents. Phage display technology has great potential to screen peptides or antibodies with high binding capacities for a wide range of targets. This property is significant in the rapid search for new antibacterial agents for the control of bacterial resistance. In this paper, we not only summarized the recent progress of phage display for the discovery of novel therapeutic agents, identification of action sites of bacterial target proteins, and rapid detection of different pathogens, but also discussed several problems of this technology that must be solved. Breakthrough in these problems may further promote the development and application of phage display technology in the biomedical field in the future.
Collapse
|
6
|
Nur A, Schubert M, Lai JY, Hust M, Choong YS, Isa WYHW, Lim TS. Antibody Phage Display. Methods Mol Biol 2023; 2702:3-12. [PMID: 37679612 DOI: 10.1007/978-1-0716-3381-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The application of antibodies has transcended across many areas of work but mainly as a research tool, for diagnostic and for therapeutic applications. Antibodies are immunoproteins from vertebrates that have the unique property of specifically binding foreign molecules and distinguish target antigens. This property allows antibodies to effectively protect the host from infections. Apart from the hybridoma technology using transgenic animals, antibody phage display is commonly considered the gold standard technique for the isolation of human monoclonal antibodies. The concept of antibody phage display surrounds the ability to display antibody fragments on the surface of M13 bacteriophage particles with the corresponding gene packaged within the particle. A repetitive in vitro affinity based selection process permits the enrichment of target specific binders. This process of recombinant human monoclonal antibody generation also enables additional engineering for various applications. This makes phage display an indispensable technique for antibody development and engineering activities.
Collapse
Affiliation(s)
- Alia Nur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Wan Yus Haniff Wan Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
- Analytical Biochemistry Research Center, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
7
|
Li L, Wu S, Si Y, Li H, Yin X, Peng D. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Compr Rev Food Sci Food Saf 2022; 21:4354-4377. [PMID: 35904244 DOI: 10.1111/1541-4337.13018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Immunoassays are reliable, efficient, and accurate methods for the analysis of small-molecule harmful substances (such as pesticides, veterinary drugs, and biological toxins) that may be present in food. However, traditional polyclonal and monoclonal antibodies are limited by animal hosts and hinder further development of immunoassays. With the gradual application of phage display technology as an efficient in vitro selection technology, the single-chain fragment variable (scFv) now provides an exciting alternative to traditional antibodies. Efficiently constructed scFv source libraries and specifically designed biopanning schemes can now yield scFvs possessing specific recognition capabilities. A rational mutation strategy further enhances the affinity of scFv, and allows it to reach a level that cannot be achieved by immunization. Finally, appropriate prokaryotic expression measures ensure stable and efficient production of scFv. Therefore, when developing excellent scFvs, it is necessary to focus on three key aspects of this process that include screening, mutation, and expression. In this review, we analyze in detail the preparation and affinity improvement process for scFv and provide insights into the research progress and development trend of scFv-based immunoassay methods for monitoring small-molecule harmful substances.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Si
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaming Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyang Yin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Ch'ng ACW, Schepergerdes L, Choong YS, Hust M, Lim TS. Antimicrobial antibodies by phage display: Identification of antibody-based inhibitor against mycobacterium tuberculosis isocitrate lyase. Mol Immunol 2022; 150:47-57. [PMID: 35987135 DOI: 10.1016/j.molimm.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
The increasing incidence reports of antibiotic resistance highlights the need for alternative approaches to deal with bacterial infections. This brought about the idea of utilizing monoclonal antibodies as an alternative antibacterial treatment. Majority of the studies are focused on developing antibodies to bacterial surface antigens, with little emphasis on antibodies that inhibit the growth mechanisms of a bacteria host. Isocitrate lyase (ICL) is an important enzyme for the growth and survival of Mycobacterium tuberculosis (MTB) during latent infection as a result of its involvement in the mycobacterial glyoxylate and methylisocitrate cycles. It is postulated that the inhibition of ICL can disrupt the life cycle of MTB. To this extent, we utilized antibody phage display to identify a single chain fragment variable (scFv) antibody against the recombinant ICL protein from MTB. The soluble a-ICL-C6 scFv clone exhibited good binding characteristics with high specificity against ICL. More importantly, the clone exhibited in vitro inhibitory effect with an enzymatic assay resulting in a decrease of ICL enzymatic activity. In silico analysis showed that the scFv-ICL interactions are driven by 23 hydrogen bonds and 13 salt bridges that might disrupt the formation of ICL subunits for the tertiary structure or the formation of active site β domain. However, further validation is necessary to confirm if the isolated clone is indeed a good inhibitor against ICL for application against MTB.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Lena Schepergerdes
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, 38106 Braunschweig
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, 38106 Braunschweig
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
9
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
10
|
Lim CC, Chan SK, Lim YY, Ishikawa Y, Choong YS, Nagaoka Y, Lim TS. Development and structural characterisation of human scFv targeting MDM2 spliced variant MDM2 15kDa. Mol Immunol 2021; 135:191-203. [PMID: 33930714 DOI: 10.1016/j.molimm.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023]
Abstract
The murine double minute 2 (MDM2) protein is a major negative regulator of the tumour suppressor protein p53. Under normal conditions, MDM2 constantly binds to p53 transactivation domain and/or ubiquinates p53 via its role as E3 ubiquitin ligase to promote p53 degradation as well as nuclear export to maintain p53 levels in cells. Meanwhile, amplification of MDM2 and appearance of MDM2 spliced variants occur in many tumours and normal tissues making it a prognostic indicator for human cancers. The mutation or deletion of p53 protein in half of human cancers inactivates its tumour suppressor activity. However, cancers with wild type p53 have its function effectively inhibited through direct interaction with MDM2 oncoprotein. Here, we described the construction of a MDM2 spliced variant (rMDM215kDa) consisting of SWIB/MDM2 domain and its central region for antibody generation. Biopanning with a human naïve scFv library generated four scFv clones specific to rMDM215kDa. Additionally, the selected scFv clones were able to bind to the recombinant full length MDM2 (rMDM2-FL). Computational prediction showed that the selected scFv clones potentially bind to exon 7-8 of MDM2 while leaving the MDM2/SWIB domain free for p53 interaction. The developed antibodies exhibit good specificity can be further investigated for downstream biomedical and research applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yee Ying Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yuya Ishikawa
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho Suita, Osaka, 564-8680, Japan
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho Suita, Osaka, 564-8680, Japan
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
11
|
Mohd Ali MR, Sum JS, Aminuddin Baki NN, Choong YS, Nor Amdan NA, Amran F, Lim TS. Development of monoclonal antibodies against recombinant LipL21 protein of pathogenic Leptospira through phage display technology. Int J Biol Macromol 2020; 168:289-300. [PMID: 33310091 DOI: 10.1016/j.ijbiomac.2020.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
Leptospirosis is a potentially fatal zoonosis that is caused by spirochete Leptospira. The signs and symptoms of leptospirosis are usually varied, allowing it to be mistaken for other causes of acute febrile syndromes. Thus, early diagnosis and identification of a specific agent in clinical samples is crucial for effective treatment. This study was aimed to develop specific monoclonal antibodies against LipL21 antigen for future use in leptospirosis rapid and accurate immunoassay. A recombinant LipL21 (rLipL21) antigen was optimized for expression and evaluated for immunogenicity. Then, a naïve phage antibody library was utilized to identify single chain fragment variable (scFv) clones against the rLipL21 antigen. A total of 47 clones were analysed through monoclonal phage ELISA. However, after taking into consideration the background OD405 values, only 4 clones were sent for sequencing to determine human germline sequences. The sequence analysis showed that all 4 clones are identical. The in silico analysis of scFv-lip-1 complex indicated that the charged residues of scFv CDRs are responsible for the recognition with rLipL21 epitopes. The generated monoclonal antibody against rLipL21 will be evaluated as a detection reagent for the diagnosis of human leptospirosis in a future study.
Collapse
Affiliation(s)
- Mohammad Ridhuan Mohd Ali
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), 40170 Setia Alam, Malaysia
| | - Jia Siang Sum
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nurul Najian Aminuddin Baki
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), 40170 Setia Alam, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nur Asyura Nor Amdan
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), 40170 Setia Alam, Malaysia
| | - Fairuz Amran
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), 40170 Setia Alam, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
12
|
TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A*11 and HLA-A*24. Int J Biol Macromol 2020; 155:305-314. [DOI: 10.1016/j.ijbiomac.2020.03.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/23/2020] [Accepted: 03/26/2020] [Indexed: 02/04/2023]
|
13
|
Lim CC, Woo PCY, Lim TS. Development of a Phage Display Panning Strategy Utilizing Crude Antigens: Isolation of MERS-CoV Nucleoprotein human antibodies. Sci Rep 2019; 9:6088. [PMID: 30988390 PMCID: PMC6465254 DOI: 10.1038/s41598-019-42628-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Antibody phage display has been pivotal in the quest to generate human monoclonal antibodies for biomedical and research applications. Target antigen preparation is a main bottleneck associated with the panning process. This includes production complexity, downstream purification, quality and yield. In many instances, purified antigens are preferred for panning but this may not be possible for certain difficult target antigens. Here, we describe an improved procedure of affinity selection against crude or non-purified antigen by saturation of non-binders with blocking agents to promote positive binder enrichment termed as Yin-Yang panning. A naïve human scFv library with kappa light chain repertoire with a library size of 109 was developed. The improved Yin-Yang biopanning process was able to enrich monoclonal antibodies specific to the MERS-CoV nucleoprotein. Three unique monoclonal antibodies were isolated in the process. The Yin-Yang biopanning method highlights the possibility of utilizing crude antigens for the isolation of monoclonal antibodies by phage display.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
14
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
15
|
Cassette hybridization for vector assembly application in antibody chain shuffling. Biotechniques 2018; 65:269-274. [DOI: 10.2144/btn-2018-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gene assembly methods are an integral part of molecular cloning experiments. The majority of existing vector assembly methods stipulate a need for exonucleases, endonucleases and/or the use of single-stranded DNA as starting materials. Here, we introduced a vector assembly method that employs conventional PCR to amplify stable double-stranded DNA fragments and assembles them into functional vectors specifically for antibody chain shuffling. We successfully formed vectors using cassettes amplified from different templates and assembled an array of single chain fragment variable clones of fixed variable heavy chain, with different variable light chains – a chain shuffling process for antibody maturation. The method provides an easy alternative to the conventional cloning process.
Collapse
|
16
|
Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a Mycobacterium Tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A*02. Mol Immunol 2018; 101:189-196. [DOI: 10.1016/j.molimm.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 11/23/2022]
|
17
|
Ch'ng ACW, Hamidon NHB, Konthur Z, Lim TS. Magnetic Nanoparticle-Based Semi-Automated Panning for High-Throughput Antibody Selection. Methods Mol Biol 2018; 1701:301-319. [PMID: 29116512 DOI: 10.1007/978-1-4939-7447-4_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of recombinant human antibodies is growing rapidly mainly in the field of diagnostics and therapeutics. To identify antibodies against a specific antigen, panning selection is carried out using different display technologies. Phage display technology remains the preferred platform due to its robustness and efficiency in biopanning experiments. There are both manual and semi-automated panning selections using polystyrene plastic, magnetic beads, and nitrocellulose as the immobilizing solid surface. Magnetic nanoparticles allow for improved antigen binding due to their large surface area. The Kingfisher Flex magnetic particle processing system was originally designed to aid in RNA, DNA, and protein extraction using magnetic beads. However, the system can be programmed for antibody phage display panning. The automation allows for a reduction in human error and improves reproducibility in between selections with the preprogrammed movements. The system requires minimum human intervention to operate; however, human intervention is needed for post-panning steps like phage rescue. In addition, polyclonal and monoclonal ELISA can be performed using the semi-automated platform to evaluate the selected antibody clones. This chapter will summarize the suggested protocol from the panning stage till the monoclonal ELISA evaluation. Other than this, important notes on the possible optimization and troubleshooting are also included at the end of this chapter.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Analytical Biochemistry Research Centre, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Nurul Hamizah Binti Hamidon
- Analytical Biochemistry Research Centre, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Zoltán Konthur
- Max Planck Institute of Colloids and Interfaces, Mühlenberg 1, 14476, Potsdam, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia. .,Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, Penang, Malaysia.
| |
Collapse
|
18
|
Abstract
This protocol describes the processes involved in the generation of human antibody libraries in Fab format. The antibody repertoire is derived from peripheral blood mononucleocytes focusing on different immunoglobulin isotypes. A two-step cloning process was used to generate a diverse human Fab library for subsequent selection by phage display. The method can be applied for the generation of both naive and immune antibody libraries. The naive repertoire allows for the library to be applied for the generation of human monoclonal antibodies against a broad range of target antigens making it a useful resource for antibody generation. However, the immune repertoire will be focused against target antigens from a particular disease. The protocol will focus on the generation of the library including the panning process.
Collapse
Affiliation(s)
- Noorsharmimi Omar
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia. .,Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, Penang, Malaysia.
| |
Collapse
|
19
|
Antibody-Based Protective Immunity against Helminth Infections: Antibody Phage Display Derived Antibodies against BmR1 Antigen. Int J Mol Sci 2017; 18:ijms18112376. [PMID: 29165352 PMCID: PMC5713345 DOI: 10.3390/ijms18112376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Helminth parasite infections are significantly impacting global health, with more than two billion infections worldwide with a high morbidity rate. The complex life cycle of the nematodes has made host immune response studies against these parasites extremely difficult. In this study, we utilized two phage antibody libraries; the immune and naïve library were used to identify single chain fragment variable (scFv) clones against a specific filarial antigen (BmR1). The V-gene analysis of isolated scFv clones will help shed light on preferential VDJ gene segment usage against the filarial BmR1 antigen in healthy and infected states. The immune library showed the usage of both lambda and kappa light chains. However, the naïve library showed preferential use of the lambda family with different amino acid distributions. The binding characteristics of the scFv clones identified from this work were analyzed by immunoassay and immunoaffinity pull down of BmR1. The work highlights the antibody gene usage pattern of a naïve and immune antibody library against the same antigen as well as the robust nature of the enriched antibodies for downstream applications.
Collapse
|
20
|
Omar N, Hamidon NH, Yunus MH, Noordin R, Choong YS, Lim TS. Generation and selection of naïve Fab library for parasitic antigen: Anti‐
Bm
SXP antibodies for lymphatic filariasis. Biotechnol Appl Biochem 2017; 65:346-354. [DOI: 10.1002/bab.1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/16/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Noorsharmimi Omar
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Nurul Hamizah Hamidon
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Muhammad Hafiznur Yunus
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
- Analytical Biochemistry Research CentreUniversiti Sains Malaysia Penang Malaysia
| |
Collapse
|
21
|
Hamidon NH, Suraiya S, Sarmiento ME, Acosta A, Norazmi MN, Lim TS. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections. Appl Biochem Biotechnol 2017; 184:852-868. [DOI: 10.1007/s12010-017-2582-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/15/2017] [Indexed: 12/30/2022]
|
22
|
Chin CF, Lai JY, Choong YS, Anthony AA, Ismail A, Lim TS. Delineation of B-cell Epitopes of Salmonella enterica serovar Typhi Hemolysin E: Potential antibody therapeutic target. Sci Rep 2017; 7:2176. [PMID: 28526816 PMCID: PMC5438399 DOI: 10.1038/s41598-017-01987-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Hemolysin E (HlyE) is an immunogenic novel pore-forming toxin involved in the pathogenesis of typhoid fever. Thus, mapping of B-cell epitopes of Salmonella enterica serovar Typhi (S. Typhi) is critical to identify key immunogenic regions of HlyE. A random 20-mer peptide library was used for biopanning with enriched anti-HlyE polyclonal antibodies from typhoid patient sera. Bioinformatic tools were used to refine, analyze and map the enriched peptide sequences against the protein to identify the epitopes. The analysis identified both linear and conformational epitopes on the HlyE protein. The predicted linear GAAAGIVAG and conformational epitope PYSQESVLSADSQNQK were further validated against the pooled sera. The identified epitopes were then used to isolate epitope specific monoclonal antibodies by antibody phage display. Monoclonal scFv antibodies were enriched for both linear and conformational epitopes. Molecular docking was performed to elucidate the antigen-antibody interaction of the monoclonal antibodies against the epitopes on the HlyE monomer and oligomer structure. An in-depth view of the mechanistic and positional characteristics of the antibodies and epitope for HlyE was successfully accomplished by a combination of phage display and bioinformatic analysis. The predicted function and structure of the antibodies highlights the possibility of utilizing the antibodies as neutralizing agents for typhoid fever.
Collapse
Affiliation(s)
- Chai Fung Chin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Amy Amilda Anthony
- Institute for Research in Molecular Medicine, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Asma Ismail
- Institute for Research in Molecular Medicine, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
23
|
Chan SK, Lim TS. Immune Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:61-78. [PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
24
|
Chan SK, Rahumatullah A, Lai JY, Lim TS. Naïve Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:35-59. [PMID: 29549634 PMCID: PMC7120739 DOI: 10.1007/978-3-319-72077-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Anizah Rahumatullah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|