1
|
Matkivska R, Samborska I, Maievskyi O. Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomed Rep 2024; 20:16. [PMID: 38144889 PMCID: PMC10739175 DOI: 10.3892/br.2023.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The human body is affected by environmental factors. The dynamic balance between the organism and its environment results from the influence of natural, anthropogenic and social aspects. The factors of exogenous origin determine development of adaptive changes. The present article summarises the mechanisms of animal venom toxins and homeostasis disruption in the body of mammals. The mechanisms underlying pathological changes are associated with shifts in biochemical reactions. Components of the immune, nervous and endocrine systems are key in the host defense and adaptation processes in response to venom by triggering signalling pathways (PI3kinase pathway, arachidonic acid cascade). Animal venom toxins initiate the development of inflammatory processes, the synthesis of pro-inflammatory mediators (cytokines), ROS, proteolytic enzymes, activate the migration of leukocytes and macrophages. Keratinocytes and endothelial cells act as protective barriers under the action of animal venom toxins on the body of mammals. In addition, the formation of pores in cell membranes, structural changes in cell ion channels are characteristic of the action of animal venom toxins.
Collapse
Affiliation(s)
- Ruzhena Matkivska
- Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University, Kyiv 03680, Ukraine
| | - Inha Samborska
- Department of Biological and General Chemistry, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Oleksandr Maievskyi
- Department of Clinical Medicine, Educational and Scientific Center ‘Institute of Biology and Medicine’ of Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine
| |
Collapse
|
2
|
Scorpion venom exhibits adjuvant effect by eliciting HBsAg-specific Th1 immunity through neuro-endocrine interactions. Mol Immunol 2022; 147:136-146. [PMID: 35567818 DOI: 10.1016/j.molimm.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/03/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
The Hottentotta rugiscutis scorpion venom (Hrv) contains neurotoxins, which elicit a strong innate immune response through the activation of the Hypothalamus-pituitary-adrenal axis, which could improve the quality of adaptive immunity. Hence, the Hrv was used as an adjuvant for the Hepatitis-B virus surface antigen (HBsAg) and assessed its ability in the activation of innate (NGF, CORT, cellularity, NO) and adaptive (IgM, IgG, IgG1/IgG2a/IgG2b/IgG3, Th1/Th2 cytokines, avidity) immunity. Here, the Hrv and HBsAg were given in the mixed form (HBsAg-Hrv) as well as in a separate form (HBsAg+Hrv). The NGF levels in plasma/spleen and CORT in plasma were found to be elevated optimally at 5 h and 6 h post-Hrv injection, respectively. Further studies showed that CORT and NGF levels were also highly upregulated in the HBsAg-Hrv group. The HBsAg-specific IgM titer was found to be increased in the HBsAg+Hrv group and total IgG was relatively similar among alum and Hrv-test groups, but IgG2a/IgG2b/IgG3 levels were higher along with IL-1β in HBsAg-Hrv groups. The study showed that the venom from H. rugiscutis acts as a vaccine adjuvant for HBsAg to develop strong antigen-specific Th1 immunity. The Hrv also enhances the antibody-avidity which may improve the neutralizing ability of antibodies with systemic infectious agents. The study also elucidated that the venom acts by neuroendocrine-immune mechanism and majorly impacts splenocytes through NGF and corticosterone.
Collapse
|
3
|
Santhosh KN, Pavana D, Shruthi BR, Thippeswamy NB. Protein profile of scorpion venom from Hottentotta rugiscutis and its immunogenic potential in inducing long term memory response. Toxicon 2022; 205:71-78. [PMID: 34826434 DOI: 10.1016/j.toxicon.2021.11.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/24/2022]
Abstract
The scorpions of the Buthidae family exhibit diverse toxins with proven pharmacological activities and yet underexplored. The Hottentotta rugiscutis is a commonly found south-Indian buthid scorpion, whose venom proteomic profile is unknown. In this study, the venom was biochemically and immunologically characterized by SDS-PAGE, MALDI-TOF MS, Western blot and ELISA. The regional and seasonal variation in the venom composition from the same species was also assessed at the molecular mass level. The venom was further studied in albino mice to understand its impact on various blood parameters. The venom has varied MW proteins from 6 to 275 kDa, four of them were found to be major immunodominant proteins. The mass spectra have revealed that some proteins are predominantly present in the venom of 3-4.5 kDa or 6.5-8.0 kDa, which could be the K+ or Na+ channel blockers respectively whose ratio varied by season. The obtained venom-mass spectra could also be used as H. rugiscutis specific finger-print in identifying the region-specific species. The venom was found to elicit a stress-induced innate immune response in mice, giving rise to a strong Th2 mediated humoral immune response. Overall, this study has provided a glimpse of the venom composition and its immunogenicity.
Collapse
Affiliation(s)
- Kambaiah Nagaraj Santhosh
- Department of Postgraduate Studies and Research in Microbiology, Jnana Sahyadri Campus, Kuvempu University, Shivamogga, Karnataka, India.
| | - Dattatreya Pavana
- Department of Postgraduate Studies and Research in Microbiology, Jnana Sahyadri Campus, Kuvempu University, Shivamogga, Karnataka, India.
| | - Balakrishna Rao Shruthi
- Department of Postgraduate Studies and Research in Microbiology, Jnana Sahyadri Campus, Kuvempu University, Shivamogga, Karnataka, India.
| | - Nayaka Boramuthi Thippeswamy
- Department of Postgraduate Studies and Research in Microbiology, Jnana Sahyadri Campus, Kuvempu University, Shivamogga, Karnataka, India.
| |
Collapse
|
4
|
Ryan RYM, Seymour J, Loukas A, Lopez JA, Ikonomopoulou MP, Miles JJ. Immunological Responses to Envenomation. Front Immunol 2021; 12:661082. [PMID: 34040609 PMCID: PMC8141633 DOI: 10.3389/fimmu.2021.661082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023] Open
Abstract
Venoms are complex mixtures of toxic compounds delivered by bite or sting. In humans, the consequences of envenomation range from self-limiting to lethal. Critical host defence against envenomation comprises innate and adaptive immune strategies targeted towards venom detection, neutralisation, detoxification, and symptom resolution. In some instances, venoms mediate immune dysregulation that contributes to symptom severity. This review details the involvement of immune cell subtypes and mediators, particularly of the dermis, in host resistance and venom-induced immunopathology. We further discuss established venom-associated immunopathology, including allergy and systemic inflammation, and investigate Irukandji syndrome as a potential systemic inflammatory response. Finally, this review characterises venom-derived compounds as a source of immune modulating drugs for treatment of disease.
Collapse
Affiliation(s)
- Rachael Y. M. Ryan
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
| | - Jamie Seymour
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
- QIMR Berghofer Medical Research Institute, The University of Queensland, Herston, QLD, Australia
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, Spain
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - John J. Miles
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
5
|
Daachi F, Adi-Bessalem S, Megdad-Lamraoui A, Laraba-Djebari F. Immune-toxicity effects of scorpion venom on the hypothalamic pituitary adrenal axis during rest and activity phases in a rodent model. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108787. [PMID: 32380264 DOI: 10.1016/j.cbpc.2020.108787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
Scorpion venom is a complex mixture of peptides and proteins, rich in toxins. Its toxicological effects are related to central disruptions and autonomic disturbances, organ failure, as well as an excessive systemic inflammatory response. Since the role of the hypothalamic pituitary adrenal (HPA) axis is central in the neuroendocrine-immunological axis, the purpose of this study was, therefore, to examine the immunotoxic effect of Androctonus australis hector (Aah) venom on HPA-axis in synchronised-mice model. Taking into account the circadian activity of the HPA-axis, the variations of adrenocorticotropic hormone and corticosterone plasma levels, oxidative stress as well as inflammatory markers in cerebral, hypothalamic and adrenal tissue homogenates were investigated during the rest and activity phases of animals. Histopathology study was also performed. Results showed that Aah venom activated the HPA axis. This response seems to be dependent on time of envenomation, as a higher hormone levels were more operative during the active phase than in the rest phase when compared to time-matched control. The local toxicity-effects following Aah envenomation revealed an imbalance in oxidative stress with a higher antioxidant defences in darkness hypothalamic and cerebral tissues. Furthermore, there were significantly higher levels in vascular permeability in hypothalamic and cerebral tissues accompanied by a concomitant increase in immune-cell infiltration and/or activation as shown by expression of CD68 and myeloperoxidase activity during the active phase compared with the rest phase. Overall results suggested that Aah venom had a toxic impact on different HPA-axis areas and the effect varies according to the time of envenomation.
Collapse
Affiliation(s)
- Fares Daachi
- USTHB, Faculty of Biological Sciences, Laboratory Cellular and Molecular Biology, Department Cellular and Molecular Biology, BP32, EL Alia, Bab Ezzouar 16111, Algiers, Algeria
| | - Sonia Adi-Bessalem
- USTHB, Faculty of Biological Sciences, Laboratory Cellular and Molecular Biology, Department Cellular and Molecular Biology, BP32, EL Alia, Bab Ezzouar 16111, Algiers, Algeria
| | - Amal Megdad-Lamraoui
- USTHB, Faculty of Biological Sciences, Laboratory Cellular and Molecular Biology, Department Cellular and Molecular Biology, BP32, EL Alia, Bab Ezzouar 16111, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory Cellular and Molecular Biology, Department Cellular and Molecular Biology, BP32, EL Alia, Bab Ezzouar 16111, Algiers, Algeria.
| |
Collapse
|
6
|
Anti-Inflammatory Effect of Erinacine C on NO Production Through Down-Regulation of NF-κB and Activation of Nrf2-Mediated HO-1 in BV2 Microglial Cells Treated with LPS. Molecules 2019; 24:molecules24183317. [PMID: 31547327 PMCID: PMC6766924 DOI: 10.3390/molecules24183317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 01/29/2023] Open
Abstract
Previous studies have revealed the anti-inflammatory and neuroprotective properties of Hericium erinaceus extracts, including the fact that the active ingredient erinacine C (EC) can induce the synthesis of nerve growth factor. However, there is limited research on the use and mechanisms of action of EC in treating neuroinflammation. Hence, in this study, the inflammatory responses of human BV2 microglial cells induced by LPS were used to establish a model to assess the anti-neuroinflammatory efficacy of EC and to clarify its possible mechanisms of action. The results showed that EC was able to reduce the levels of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) proteins produced by LPS-induced BV2 cells, in addition to inhibiting the expression of NF-κB and phosphorylation of IκBα (p-IκBα) proteins. Moreover, EC was found to inhibit the Kelch-like ECH-associated protein 1 (Keap1) protein, and to enhance the nuclear transcription factor erythroid 2-related factor (Nrf2) and the expression of the heme oxygenase-1 (HO-1) protein. Taken together, these data suggest that the mechanism of action of EC involves the inhibition of IκB, p-IκBα, and iNOS expressions and the activation of the Nrf2/HO-1 pathway.
Collapse
|